
Xcpp Reflection

David Barrett-Lennard
Cedanet Pty Ltd

Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

The CEDA front end compiler Xcpp supports reflection of
classes, interfaces, functions and other constructs defined in the
source code. This paper presents some motivating examples and
describes the syntax.

1 Overview

In this articlereflectionrefers to recorded information abouttypes
such as classes and interfaces defined in the source code pro-
cessed by the CEDA Xcpp front end.

2 Purpose

There are many reasons why reflection can be very useful. There
are numerous frameworks that can be closed for change because
they are able to deal with arbitrary software components de-
scribed with reflection information. An application programmer
can write a simple software component and the system provides
a range of capabilities such as persistence or cross language sup-
port for free. Here are just some of the facilities that can utilise
reflection information:

• Reflected classes may support dynamic creation of instances
of that class, supporting theAbstract Factorydesign pattern
[1]. A client can be passed a reference to a reflected class
and create instances of that type without any compile time
dependency on that type.

• Visitor Design pattern. In the Java language, reflection has
been used to get rid of the accept methods [2], or to get rid
of extra visit methods.

• Dynamic Dispatch : A client invokes a function with a sig-
nature that is only determined at run time using reflection
information (not to be confused with dynamic calls based
on virtual methods where the function signature is known at
compile time).

• Middleware support : Reflection information can be used
to automatically generate client side proxies and server side
stubs for reflected functions (or perhaps an entire reflected
interface), allowing for function arguments and return val-
ues to be automatically marshaled over the wire.

• Cross language support (e.g. to thePythonlanguage or to
.NET)

• Logging of reflected datatype values.

• GUI generation:

– Reflected data types can be automatically viewed or
edited. E.g. .NET uses this for a property grid.

– Reflected functions can be mapped to buttons or
menus in GUI systems, even using dialogs to edit the
inputs (i.e. in-parameters) if any, and to present the
results (i.e. the out-parameters) if any.

• Binary or XML serialisation of reflected datatypes.

• Mapping between alternative data representations.

• Persistence. Reflected datatypes can be made to automati-
cally persist on secondary storage.

• Replication. Reflected datatypes can automatically be repli-
cated in a distributed system, and support automatic syn-
chronisation by sending changes on the data as serialised
deltas between sites.

• Collaborative editing. Reflected datatypes that are repli-
cated in a distributed system can support real-time interac-
tive collaboration.

• Versioning, merging and branching of reflected datatypes.

• Query forms can be automatically generated to allow users
to issue database queries.

• A query engine can execute a query making use of the re-
flection on the datatypes.

3 Syntax

As a general rule, all the Xcpp language extensions involving ’$’
have reflection information generated automatically. For exam-
ple, each of the following constructs are reflected:

// Functor
$functor int32 MyFunctor(int32 x);

// Typedef
$typedef float64 Mass;

// Class/struct
$class X
{
public :

$int32 GetX() const { return x; }
private :

$int32 x;
};

// Interface
$interface Ix
{

void foo();
};

1

// Global variable
$var int32 x;

// Global function
$function void bar();

// Tuple
$tuple Point
{

int32 x;
int32 y;

};

Note therefore that reflection isoptional. For example classes
and functions written in normal C++ are not reflected.

4 Reflection Registries

cxObject.dll has global, transient, threadsafe registries for each
of the following:

• Classes (which includes structs and tuples)

• Interfaces

• Functors

• Enumerated types

• Variants [not implemented yet]

• Typedefs

• Global functions

• Global variables

Each registry supports a request for the reflection information
of an item by specifying its fully qualified name (as an ASCII
string). E.g. one can request the reflection information forthe
interface namedceda::IObject .

Each of these registries supports iteration over the items.Note
that it is possible to think of the items as forming a tree structure
according to the C++ namespaces.

Each application DLL registers its items when it is first loaded,
and they are unregistered when the DLL is unloaded. Therefore
at any point in time these global registries provide information
about what is currently available in the executing process.

For advanced users that want more dynamic control over the
registries, there are functions to directly register and unregister
items.

5 Namespace registry

All the reflected interfaces, classes etc are also registered in a
singlenamespace tree. Each namespace node registers all items
under that node in a single map keyed by a string identifier. This
means that it is necessary for all items to have unique names -
even different types. This restriction is not conventionalin C++
(which for example, within the same namespace allows for a
class to have the same name as a global variable). This restriction
is made in the interests of easing cross language support, such as
with the Python language.

6 Metadata in reflection information

Some authors refer to all reflection information asmetadata.
However in this article we restrict that term to the user defined,
auxiliary part of the reflection information not representing C++
types.

Xcpp allows arbitrarymetadatato be recorded against re-
flected types. For example:

$typedef uint32 Flags : [hex];

The metadata is recorded as a comma separated list ofterms
enclosed in square brackets. An example of a term is an iden-
tifier like hex . The meaning and purpose of the metadata is ap-
plication defined. In this case the metadatahex has been applied
to the typeFlags , presumably to control the appearance when
values are printed by frameworks that use the reflection informa-
tion. As far as the C++ type system is concerned,Flags is just an
alias for auint32 . However the reflection system treats it as an
independent type with its own recorded reflection information.

The following example defines a type calledMass, that has kg
units and the minimum is 0 meaning that negative masses are not
permitted.

$typedef float64 Mass : [unit("kg"),min(0)]

A GUI framework can use this metadata to automatically dis-
play the units and to validate user entry (i.e. ensuring thatthe
entered value isn’t negative). One of the aims in CEDA is to pro-
mote GUI frameworks that can be used to automatically present
and edit arbitrary data models. Meta-data on data model fields al-
lows for fine grained control over many details, including layout
management, choice of edit control (e.g. slider versus textbox),
data validation etc.

In general metadata is applied with a colon followed by a list
of metadata items in square brackets. The grammar is simple but
extremely flexible. E.g.

$typedef float64 Pressure :
[

unit("kPa"),
range(50,300),
levels
(

[
[name("low"), max(75),

action(email(supervisor))],
[name("medium"), range(75,100)],
[name("high"), range(100,250)],
[name("fatal"), min(250),

action(email(system_controller))]
]

)
];

The meaning and purpose of metadata is not defined by the
core ceda framework. It is simply a facility to be used (or abused)
by application programmers as they see fit.

A functor consists of an identifier, optionally followed by a
comma separated list of items enclosed in round brackets. Note
thathex is a functor with arity zero and is equivalent tohex() .

The grammar for the C++ type system is recursive. For exam-
ple, given any type one can typically form arrays over that type.
We therefore say that types cannest. Metadata can be applied
at all levels within a nested type. As an example, there are two
places where we can apply metadata in the following

$typedef int32 * Pointer;

In the followingbase(9) applies to theint32 andhex applies
to the overallPointer .

$typedef int32 :[base(9)] * :[hex] Pointer;

2

Metadata can be applied to a function’s return type, each of the
argument types and also to the function as a whole. For example

$function float64 :[unit("m/s")]
GetVelocity(

float64 :[unit("m")] s,
float64 :[unit("m/sˆ2")] a)

: [description(
"Calculate velocity when a stationary "
"object accelerates at a for "
"displacement s")]

{
return sqrt(2 * a* s);

}

In practice metadata can easily obscure the code, and it is prob-
ably a good idea to tend to use typedefs where possible. This also
avoids the need to repeat metadata information.

Metadata can be applied to an interface and also on each
method in the interface. For example

$interface ICDPlayer : [releaseDate(2010,7,23)]
{

void Play(int32 :[range(0,100)] speed);
};

Similarly metadata can be applied to a class/struct, and also to
each reflected method or member variable.

7 Metadata grammar

The following EBNF grammar (written according to [3]) defines
the format supported for meta-data.

boolean literal = ’false’ | ’true’ ;

literal =
string literal |
integer literal |
floatpt literal |
boolean literal;

element = list | functor | literal;

list = ’[’ , [element, { ’,’ , element}], ’]’ ;

functor:
identifier,
[’(’ , [element, { ’,’ , element }], ’)’];

metadata = list;

where we assume the following symbols are output by a con-
ventional C++ lexical scanner:

Symbol Example Description

identifier _ax3_111

Begins with letter or
underscore, then any
number of letters, un-
derscores or digits.

string literal "hello, world\n"

Double quoted string
literal with support
for escaped charac-
ters as for string lit-
eral in C/C++.

floatpt literal -10.453e-8
Floating point num-
ber, as per C/C++

integer literal -78
Base 10 integer lit-
eral

8 Reflecting the function to write an ob-
ject to an ostream

In the following class, the<<print>> directive tells Xcpp to re-
flect theoperator <<() function that writes the class/struct to an
ostream . This will affect the display of the object in any frame-
work that cares to use the reflection system. For example, it is
used by the CEDA Python bindings library.

$struct Point <<print>>
{

$int32 x;
$int32 y;

};

std::ostream& operator <<(std::ostream& os,
Point p)

{
os << ’(’ << p.x << ’,’ << p.y << ’)’;
return os;

}

9 How reflection information is recorded

9.1 Example

The typedef forPressure appearing in section 6 causes the fol-
lowing reflection information to be generated, to be compiled by
a standard C++ compiler:

// Registration of Pressure
namespace
{

static const BYTE Pressure_type[] =
{

0xe3,0xc1,0x00,0x00,0xa4,0x01,0x00,0xc2,
0x02,0x00,0xa2,0x32,0x00,0x00,0x00,0xa2,
0x2c,0x01,0x00,0x00,0xc1,0x03,0x00,0xe4,
0xe3,0xc1,0x04,0x00,0xa4,0x05,0x00,0xc1,
0x06,0x00,0xa2,0x4b,0x00,0x00,0x00,0xc1,
0x07,0x00,0xc1,0x08,0x00,0xc0,0x09,0x00,
0xe2,0xc1,0x04,0x00,0xa4,0x0a,0x00,0xc2,
0x02,0x00,0xa2,0x4b,0x00,0x00,0x00,0xa2,
0x64,0x00,0x00,0x00,0xe2,0xc1,0x04,0x00,
0xa4,0x0b,0x00,0xc2,0x02,0x00,0xa2,0x64,
0x00,0x00,0x00,0xa2,0xfa,0x00,0x00,0x00,
0xe3,0xc1,0x04,0x00,0xa4,0x0c,0x00,0xc1,
0x0d,0x00,0xa2,0xfa,0x00,0x00,0x00,0xc1,
0x07,0x00,0xc1,0x08,0x00,0xc0,0x0e,0x00,
0x0d

};
static const char * Pressure_stringTable[] =
{

"unit" ,
"kPa" ,
"range" ,
"levels" ,
"name" ,
"low" ,
"max" ,
"action" ,
"email" ,
"supervisor" ,
"medium" ,
"high" ,
"fatal" ,
"min" ,
"system_controller" ,

};
const ceda::ReflectedTypedef Pressure_typedef =
{

"Pressure" ,
Pressure_type,
Pressure_stringTable

};
struct SelfRegisterPressure
{

3

SelfRegisterPressure()
{

cxVerify(ceda::gfnRegisterReflectedTypedef(
&Pressure_typedef) == ceda::NSE_OK);

}
} srPressure;

}

All the strings have been placed into astring table, and the
type definition contains all the meta-data using an array of bytes.
The latter is referred to as abyte code. The byte code uses a
very small memory footprint yet can be processed (i.e. decoded)
quickly and efficiently.

9.2 Byte code

Reflected types (including auxiliary meta-data) are represented
using a byte code. This article presents the grammar using the
ISO standard [3] except that instead of terminals representing
text enclosed in quotes we instead use terminals representing byte
values written in C++ hex notation (e.g. 0x0B for the byte code
11 in decimal). It is also convenient to introduce the following
symbols:

Symbol Description

int8
8 bit signed integer represented by
a single byte.

int16

16 bit signed integer formed by 2
consecutive bytes in the byte code
assuming little endian.

int32

32 bit signed integer formed by 4
consecutive bytes in the byte code
assuming little endian.

float64

64 bit double precision floating
point formed by 8 consecutive bytes
in the byte code assuming IEEE
754.

9.2.1 Basic types

A single byte code value is used to represent the basic types as
follows:

FT_VOID = 0x00;
FT_BOOL = 0x01;
FT_INT8 = 0x02;
FT_INT16 = 0x03;
FT_INT32 = 0x04;
FT_INT64 = 0x05;
FT_INT128 = 0x06;
FT_UINT8 = 0x07;
FT_UINT16 = 0x08;
FT_UINT32 = 0x09;
FT_UINT64 = 0x0A;
FT_UINT128 = 0x0B;
FT_FLOAT32 = 0x0C;
FT_FLOAT64 = 0x0D;
FT_CHAR8 = 0x0E;
FT_CHAR16 = 0x0F;
FT_STRING8 = 0x10;
FT_STRING16 = 0x11;

basic_type =
FT_VOID | FT_BOOL |
FT_INT8 | FT_INT16 | FT_INT32 |
FT_INT64 | FT_INT128 |
FT_UINT8 | FT_UINT16 | FT_UINT32 |
FT_UINT64 | FT_UINT128 |
FT_FLOAT32 | FT_FLOAT64 |
FT_CHAR8 | FT_CHAR16 |
FT_STRING8 | FT_STRING16;

9.2.2 Referenced Types

The byte code may reference other (reflected) named types using
the fully qualified name, such asceda::IObject . This allows a
client that is processing the byte code to use the fully qualified
name to look up the relevant reflection registry (see section4).

Rather than record a string directly in the byte code, the strings
are instead assumed to be recorded in a separatestring table.
Furthermore it is assumed that the relevant string table contains
fewer that 65536 entries so therefore a 16 bit integer can be used
to index into the string table. It is the 16 bit string table index that
is recorded in the byte code.

A reference to a named type always begins with a byte value
that indicates the “kind” of type that has been referenced (i.e. an
indicator for whether it is a class, interface, or enum etc).In more
detail, this means the kind of type as it has been declared and
therefore recorded in one of the global reflection registries, and
therefore may in fact be a typedef (and in that case it is not possi-
ble to tell what the type actually is until looking up the reflected
typedef registry with the given fully qualified name). Client code
that processes byte code will typically treat typedefs as anindi-
rection, and will use the typedef registry to step into the byte code
that the typedef in turn designates.

FT_CLASS = 0x12;
FT_INTERFACE = 0x13;
FT_TYPEDEF = 0x14;
FT_ENUM = 0x15;
FT_FUNCTOR = 0x16;
FT_OPAQUE = 0x17;
FT_UNION = 0x18;
FT_VARIANT = 0x19;

ref_key =
FT_CLASS | FT_INTERFACE |
FT_TYPEDEF | FT_ENUM |
FT_FUNCTOR | FT_OPAQUE |
FT_UNION | FT_VARIANT;

string_table_index = int16;

referenced_type =
ref_key, string_table_index;

9.2.3 Unary qualified Types

There are a number of byte code values that prefix a given
type. For example, prefixing any given byte code with the value
FT_POINTER = 0x1C changes the type to instead be a pointer to
that type. E.g.

C/C++ type Byte Code
int32 [0x04]

int32 * [0x1C 0x04]

const float64 * [0x1C 0x1B 0x0D]

FT_VOLATILE = 0x1A;
FT_CONST = 0x1B;
FT_POINTER = 0x1C;
FT_REFERENCE = 0x1D;
FT_INTERFACE_POINTER = 0x1E;
FT_PREF = 0x1F;
FT_CREF = 0x20;
FT_VECTOR = 0x21;
FT_DEQUE = 0x22;
FT_LIST = 0x23;
FT_SET = 0x24;
FT_BAG = 0x25;
FT_DYNARRAY = 0x26;

unary_type_qualifier =
FT_VOLATILE | (* volatile T *)
FT_CONST | (* const T *)

4

FT_POINTER | (* T* *)
FT_REFERENCE | (* T& *)
FT_INTERFACE_POINTER | (* ptr<T> *)
FT_PREF | (* pref<T> *)
FT_CREF | (* cref<T> *)
FT_VECTOR | (* xvector<T> *)
FT_DEQUE | (* xdeque<T> *)
FT_LIST | (* xlist<T> *)
FT_SET | (* xset<T> *)
FT_BAG | (* xbag<T> *)
FT_DYNARRAY; (* T[] *)

9.2.4 Meta-data

Any type can be qualified with auxiliary, user defined meta-data,
by prefixing the byte code with the metadata information. E.g.

C/C++ type Byte Code
int32 [0x04]

int32 : [] [0xE0 0x04]

int32 : [false] [0xE1 0xA1 0x00 0x04]

int32 : [false , true]
[0xE2 0xA1 0x00 0xA1

0x01 0x04]

int32 : [5]
[0xE1 0xA2 0x05 0x00

0x00 0x00 0x04]

int32 : [10.0]

[0xE1 0xA3 0x00 0x00

0x00 0x00 0x00 0x00

0x24 0x40 0x04]

The grammar below defines four types of literals that are avail-
able for the metadata. Note that strings are represented indirectly
using a 16 bit index into a string table.

MDT_BOOL = 0xA1;
MDT_INT32 = 0xA2;
MDT_FLOAT64 = 0xA3;
MDT_STRING = 0xA4;

false = 0x00;
true = 0x01;

literal =
MDT_BOOL, (false | true) |
MDT_INT32, int32 |
MDT_FLOAT64, float64 |
MDT_STRING, string_table_index;

For reasons of space an ellipsis (...) has been used in vari-
ous places in the grammar. Lists with up to 32 elements are
always represented using the byte codesMDT_LIST_0, ...,

MDT_LIST_31. For example the empty list[] is designated with
the byte valueMDT_LIST_0. For lists with more than 31 el-
ements it is necessary to parenthesise the elements with the
MDT_BEGIN_LIST andMDT_END_LISTmarkers.

MDT_BEGIN_LIST = 0xA7;
MDT_END_LIST = 0xA8;

MDT_LIST_0 = 0xE0;
MDT_LIST_1 = 0xE1;
MDT_LIST_2 = 0xE2;
...
MDT_LIST_31 = 0xFF;

meta_data_list =
MDT_LIST_0 |
MDT_LIST_1, meta_data |
MDT_LIST_2, meta_data, meta_data |
...
MDT_LIST_31, meta_data, meta_data, ...,

meta_data |
MDT_BEGIN_LIST, {meta_data}, MDT_END_LIST;

Functors are similar to lists, except it is qualified with a 16bit
string table index, that designates the name of the functor.Note

that identifiers without argument lists (likehex appearing in the
example in section 6) useMDT_FUNCTOR_0.

MDT_BEGIN_FUNCTOR = 0xA5;
MDT_END_FUNCTOR = 0xA6;

MDT_FUNCTOR_0 = 0xC0;
MDT_FUNCTOR_1 = 0xC1;
MDT_FUNCTOR_2 = 0xC2;
...
MDT_FUNCTOR_31 = 0xDF;

meta_data_functor =
MDT_FUNCTOR_0, string_table_index |
MDT_FUNCTOR_1, string_table_index, meta_data |
MDT_FUNCTOR_2, string_table_index, meta_data,

meta_data |
...
MDT_FUNCTOR_31, string_table_index, meta_data,

meta_data, ..., meta_data |
MDT_BEGIN_FUNCTOR, string_table_index,

{meta_data}, MDT_END_FUNCTOR;

A metadata item is either a literal, list or functor. The over-
all metadata to be applied as a prefix to a type may optionally
include a special 32 bit value representing up to 32 flags.

MDT_FLAGS = 0xA0;

meta_data =
literal |
meta_data_list |
meta_data_functor;

flags = int32;

meta_data_qualifier =
[MDT_FLAGS flags], meta_data_list;

9.2.5 Arrays

An array is specified by prefixing the element type by the byte
codeFT_ARRAYand the size of the array as a 32 bit integer.

C/C++ type Byte Code

int32 x[3]
[0x27 0x03 0x00 0x00 0x00

0x04]

int32 * const x[3]
[0x27 0x03 0x00 0x00 0x00

0x1B 0x1C 0x04]

FT_ARRAY = 0x27;
array_size = int32;
array_type = FT_ARRAY, array_size, type;

9.2.6 Maps

A map with given key and value types is specified using the byte
codeFT_MAP

FT_MAP = 0x28;
key_type = type;
val_type = type;
map_type = FT_MAP, key_type, val_type;

9.2.7 Parameterised types

Consider a type that is parameterised by types namedT0, T1,

... A byte code can support parameterised types (i.e. genericity)
by using the following byte codes for the formal parameters:

FT_PARAM_0 = 0x40; (* T0 *)
FT_PARAM_1 = 0x41; (* T1 *)
FT_PARAM_2 = 0x42; (* T2 *)
...
FT_PARAM_63 = 0x9F; (* T63 *)

5

Here are some examples of parameterised types:

C/C++ type Byte Code

const T0[3]
[0x27 0x03 0x00 0x00 0x00

0x1B 0x40]

map<T0,T1 * > [0x28 0x40 0x1C 0x41]

9.2.8 Putting it all together

It is now a simple matter to collect together all the possibletype
specifiers:

type =
basic_type |
referenced_type |
unary_type_qualifier type |
array_type |
map_type |
meta_data_qualifier, type;

References

[1] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides,Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995, ISBN-13:
9780201633610.

[2] Jens Palsberg and C. Barry Jay,The Essence of the Visitor
Pattern, 1997 IEEE-CS COMPSAC.

[3] ISO/IEC 14977:1996(E).Information technology - Syn-
tactic metalanguage - Extended BNF, First edition
1996-12-15. http://standards.iso.org/ittf/

PubliclyAvailableStandards/s026153_ISO_IEC_

14977_1996(E).zip .

6

