
Xcpp Mixins

David Barrett-Lennard
Cedanet Pty Ltd

Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

A mixin is a fragment of a class that is intended to be composed
with other classes or mixins. Xcpp (a front end providing exten-
sions to C++) supports a specialised syntax for template mixins.
This paper presents some motivating examples and describesthe
syntax.

1 Overview

Mixins have been described in the literature as a remarkable
means to achieve code reuse (See for example [1] and [2]). A
mixin is a capability that can be easily added to one or more
classes. A mixin itself is never intended to be stand alone - i.e. to
be instantiated in isolation. Rather it is only an adornmentto be
applied to some existing class.

Typically a mixin is highly reusable, and may be mixed into
many different concrete classes. Therefore it can be regarded as
a powerful means of achieving code reuse. There are different
ways that the mixin concept has been implemented in C++. One
way is to use multiple inheritance. However, there are many ad-
vantages to using single inheritance chains of mixins involving
template classes that are parameterised on the base class.

Java and C# don’t support a general enough form of genericity
to make the technique possible in those languages [3].

The Xcpp front end provides specialised support for mixins,
and involves the$mixin keyword. A detailed description of this
feature is the main focus of this article.

2 C++ parameterised template mixins

In this section the technique of using mixins is illustratedin stan-
dard C++ in the GUI controls application domain. For simplicity
it is assumed the GUI elements appear in a rectangular regionand
the examples only show how mixins can be used to help write
GetWidth() andGetHeight() methods. In a more complete ex-
ample, methods to perform drawing (e.g. by issuing OpenGL
commands), hit testing and to process mouse events would be
defined as well.

2.1 Some example mixins

The mixin Rotate90 applies a rotation of 90 degrees to its (un-
specified) base class. Note that when a rectangle is rotated by 90
degrees its width becomes its height and vice versa.

template <class Base>
struct Rotate90 : public Base
{

int GetWidth() const
{

return Base::GetHeight();
}
int GetHeight() const
{

return Base::GetWidth();
}

};

In a more complete example, methods would also be imple-
mented to apply a rotation transformation before calling the base
class draw method (this for example would simply involve a call
to glRotate in OpenGL), and to rotate (x,y) positions passed into
hit testing or mouse event methods. The upshot is that one can
rotateany GUI control by 90 degrees, and it works exactly as
expected. For example a horizontal slider control becomes aver-
tical slider, and even allows the mouse to be used to drag the
slider thumb in a vertical direction.

The following mixin scales the x coordinate byscalex, and
the y coordinate byscaley.

template <class Base, int scalex, int scaley>
struct Scale : public Base
{

int GetWidth() const
{

return scalex * Base::GetWidth();
}
int GetHeight() const
{

return scaley * Base::GetHeight();
}

};

The following mixin applies a border (i.e. left, right, top and
bottom margins) around its base class.

template <class Base, int border>
struct Border : public Base
{

int GetWidth() const
{

return 2*border + Base::GetWidth();
}
int GetHeight() const
{

return 2*border + Base::GetHeight();
}

};

2.2 Using the mixins

In order to use the mixins, a concrete class is needed that canbe
fed into the base of themixin chain. For this purpose, consider a
rather conventional C++ class namedUnitSquare.

struct UnitSquare
{

int GetWidth() const { return 1; }
int GetHeight() const { return 1; }

1

};

Mixins are applied in a linear chain involving single inheri-
tance. Interestingly the same mixin can usefully appear more
than once in the chain. Most generally the order in which the
mixins are applied is significant. For example applying a border
before it is scaled, means that the margins are scaled as well.

struct X : Scale< Border< Rotate90<
Scale<UnitSquare,2,1> >,1 >,10,3 >

{
};

It turns out that X::GetWidth() returns 30, and
X::GetHeight() returns 12. Modern C++ compilers are
rather good at inlining, so typically the release build isexactly
the same as if the following had been entered by the programmer:

struct X
{

int GetWidth() const { return 30; }
int GetHeight() const { return 12; }

};

2.3 Advantages

This example only shows the tip of the iceberg. A more complete
example would provide a few dozen mixins, and support draw-
ing, mouse events etc. Mixin classes remain relatively simple be-
cause they represent simple orthogonal concepts. In combination
they make the compiler generate fast, efficient, non trivialcode -
the kind of code done manually by the human with conventional
GUI programming.

OO programs often exploit dynamic polymorphism to achieve
code reuse. For example the decorator design pattern ([4]) is of-
ten used. A decorator object could apply a rotation of 90 degrees
to the GUI control that it decorates. This approach is different to
mixins in the following respects:

• A run time decorator class requires a member variable
which is a pointer to the object being decorated. The pro-
grammer must write the code to initialise this member. E.g.
it could be provided in a constructor or an initialisation
method;

• Dynamic polymorphism is required so the same decorator
can be applied to many different kinds of objects at run time;

• Compile time assembly instead becomes run time assem-
bly. This can be inconvenient to express in procedural code.
Code that creates and wires up objects at run time is typi-
cally more verbose than using mixin chains, where binding
of method calls through the chain is implicit;

• Very fine grained run time assembly can lead to objects that
seem mysterious - such as an object that rotates another ob-
ject;

• Run time assembly can exacerbate the problem of support-
ing persistence (i.e. assuming the assemblies themselves are
to be made persistent). There are great performance over-
heads for persisting fine grained graphs or trees of objects,
and perhaps even more significantly it greatly complicates
the problem of schema evolution;

• There is inevitably the overhead of indexing into a vtable
for each method call, and more significantly it defeats the
inlining capabilities of the compiler; and

• There are more objects to be heap allocated.

Run time assembly is very powerful for allowing end users
to compose complex systems from simple parts. Therefore both
approaches can be important. An effective strategy, that gives
the best of both worlds is to use mixins as a basis for writing
components that support run time assembly. More specifically,
a valuable technique is to write a delegator base class associated
with the abstract base class. That way all the compile time mixins
can be easily converted into run time decorators. For example:

// Abstract Base Class uses virtual methods
// to allow for dynamic polymorphism.
struct GuiControl
{

virtual int GetWidth() const = 0;
virtual int GetHeight() const = 0;

};

// General purpose delegator forwards on
// method calls to its delegate
struct GuiControlDelegator :

public GuiControl
{

int GetWidth() const
{

return delegate->GetWidth();
}
int GetHeight() const
{

return delegate->GetHeight();
}
GuiControl* delegate;

};

// Applying the mixin to the delegator
// gives a run time decorator
struct Rotate90Decorator :

Rotate90<GuiControlDecorator>
{
};

Note that as a result of inlining the run time decorator is just
as efficient as a version coded directly without mixins.

3 Using Xcpp for mixins

The above example shows that in straight C++ long mixin chains
are rather awkward syntactically. The Xcpp front end provides
a much more convenient syntax. The above example can be en-
coded as follows

$mixin Rotate90
{

int GetWidth() const
{

return $base::GetHeight();
}
int GetHeight() const
{

return $base::GetWidth();
}

};
$mixin Scale<int scalex, int scaley>
{

int GetWidth() const
{

return scalex * $base::GetWidth();
}
int GetHeight() const
{

return scaley * $base::GetHeight();
}

};
$mixin Border<int border>
{

int GetWidth() const
{

return 2*border + $base::GetWidth();
}

2

int GetHeight() const
{
return 2*border + $base::GetHeight();

}
};
$mixin UnitSquare
{

int GetWidth() const { return 1; }
int GetHeight() const { return 1; }

};
$struct X

mixin
[
UnitSquare
Scale<2,1>
Rotate90
Border<1>
Scale<10,3>

]
{
};

The mixin chain is enclosed in square brackets. It is interpreted
as follows: we start with a unit square then applyScale<2,1> to
scale it horizontally. Next we rotate by 90 degrees, apply a border
then finally scale it vertically and horizontally.

4 Parameterised mixins and model-
view-controller

Ceda makes heavy use of the model-view-controller pattern,but
in a very unconventional manner. The idea is to use parame-
terised mixins to write a single class that internally combines the
model, view and controller into asingle object.

The basic pattern is illustrated with the following code

$class MyMVC isa ceda::IView
model
{
// model variables go here

}
mixin
[
MyViewMixin
MyControllerMixin

]
{
};

MyMVC is a class that supports persistence. It has a single model
which supports schema evolution and this feeds into the start of
the mixin chain. As a result all mixins have read and write access
to the model variables. Note that this access is through the appro-
priate read and write barriers. Therefore when the view mixin(s)
read the model they automatically establish dependencies for the
Dependency Graph System. Also when the controller manipu-
lates the model variables, operations are automatically generated
against the model. These operations allow for interactive and
non-interactive collaboration amongst multiple users, configura-
tion management etc. Note as well then whenever the model
variables are changed (either locally through the controller, or
remotely due to the execution of operations received from other
computers), the dependent caches will automatically be marked
as dirty. Therefore there is no need for the programmer to be
concerned with the observer pattern between model and view.

5 Anonymous mixins

When writing a mixin the objective is generally to make it maxi-
mally reusable. Often the best way to achieve that aim is to avoid
any state (i.e. member variables)! Consider a mixin that is re-
sponsible for drawing a slider

$mixin DrawSliderMixin
{

void Draw() const
{

float pos = GetThumbPos();
int height = GetHeight();
int width = GetWidth();

// Draw the slider in a rectangle of
// dimensions ’width’, ’height’
// with the thumb at position ’pos’
...

}
};

Notice that this mixin assumes that the base class has imple-
mented the following functions

int GetWidth() const;
int GetHeight() const;
float GetThumbPos() const;

We have already seen how mixins can help implement
GetWidth() andGetHeight(). For example

$mixin DefaultSliderDimensionsMixin
{

int GetWidth() const { return 128; }
int GetHeight() const { return 32; }

};

Now consider the following class

$class X isa ceda::IView
model
{

int m_x;
}
mixin
[

DefaultSliderDimensionsMixin

// Anonymous mixin
{
float GetThumbPos() const
{

return (float) m_x/100;
}

}

DrawSliderMixin
]

{
};

This makes use of ananonymous mixin within the mixin chain.
The anonymous mixin implements the methodGetThumbPos()

that is expected byDrawSliderMixin. The result is that the slider
position is determined by the data model variablem_x.

References

[1] G. Bracha and W. Cook,Mixin-Based Inheritance, Pro-
ceedings of the 8th Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, Euro-
pean Conference on Object-Oriented Programming, 1990.

[2] Ulrich W. Eisenecker,Mixin-Based Programming in C++,
Dr. Dobb’s Journal, January 2001,http://www.ddj.com/
cpp/184404445.

[3] Bruce Eckel,Mixins: Something Else You Can’t Do With
Java Generics?, October 19, 2005,http://www.artima.
com/weblogs/viewpost.jsp?thread=132988.

3

[4] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides,Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995, ISBN-13:
9780201633610.

[5] ISO/IEC 14977:1996(E).Information technology - Syn-
tactic metalanguage - Extended BNF, First edition
1996-12-15. http://standards.iso.org/ittf/

PubliclyAvailableStandards/s026153_ISO_IEC_

14977_1996(E).zip.

4

