Xcpp Interfaces

David Barrett-Lennard
Cedanet Pty Ltd
Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract | |

Xcpp adds support for interfaces to C++ without using virtua In the literature this capability is generally referred ®ody-
functions. This article presents the syntax and discussead- Nnamic polymorphism, because the one compiled implementati
vantages over using abstract base classes for dynamic polyr@f Wit eArea() is able to call theset Ar ea() method orany class
phism. that implements theshape interface.
Now consider the following struct written in straight C+4s{a
suming an appropriate typedef for thieoat 64):

1 Overview

struct Circle

{

The xcpp preprocessor is applied to the source code befo Grele() : r(3.0) {}
subsequent compilation by a standard C/C++ compiler. Th float64 GetArea() const {return 3.14«rxr;}
$i nt er f ace directive allows for dynamic polymorphic interfaces ;: gg; gi rG?t Perim() const {return 2x3.14xr;}

to be defined, in a way that is more flexible and less type iiveus }:
than the normal support for dynamic polymorphism in C++.
The conventional approach to support interface-like fiomet ~ Notice thatGi rcl e doesn't inherit from any base classes. An
ality in C++ is to use abstract base classes (ABCs). Dynarnmstance of i rcl e class is only 8 bytes (the size of itsoat 64
polymorphism is typically achieved using a vtable pointé¢him memberr). There are no virtual methods so there is no vtable
the object that implements the interface. An alternatiyerepch pointer. Despite thati rcl e is able to implement theshape in-
is for clients to hold a pair of pointers - i.e. a vtable poirite terface, simply because it has implemented allitfreape meth-
addition to the pointer to the actual object. This fully deples ods with the required signature and semantics.
interface support from object implementation. The techaijas The coercion into an interface pointer is very simple:
been described in the literature. See for example [1] and th Grole c.
Boost Interfaces Library [2]. ptr<l Shape> s = &; // Coercion to |Shape
[1] points out that implementing an interface and suppgrtin | Wi teArea(s);
overridable methods (i.e. redefinition in derived classes)og- i
ically distinct concepts, and therefore it is useful to sefmthese ~ ©" Just
concerns in the programming language. Crcle c;
WiteArea(&c);

2 Sinterface directive If Gi rcl e hadn’timplemented the methods in thehape inter-
face then the attempted coercion would have resulteddmgile
2.1 Simple example time error.

. ' o Given one or more coercions froair cl e to | Shape within a
An interface is an abstract type only containing method alecgjiven executable or DLL, the compiler generates a singlicsta
rations and cannot be instantiated. The following declamestable of pointers to functions corresponding to the decar

interface called shape: methods in the shape interface. Each function takes a pointer
$interface |Shape to acircl e object as the first argument (i.e. in addition to the
declared formal arguments). The run time overheads of coer-
float64 GetArea() const; cion are minimal - only requiring initialisation of the twmint-
- ileELEs it i) eamst; ers within thept r <I shape>: the address of the circle object and
' the vtable pointer. This may only require twov machine code

An interface pointer to anishape is designated by instructions.
ptr<iShape>. This wraps a pair of underlying pointers — a The remarkable idea is that a polymorphic capability can be
pointer to an object and a pointer to a vtable appropriatééo Post-applied to an object independently of its implemeortat
interface for that object. Given only the above interfacénile
tion it is possible to compile functions that can call thehape 2.2 Reason forpt r <> construct
methods orany givenpt r <I Shape>. For example:

In [2] an interface likel shape is a value type that represents a

reference to some object that implements the interface tyige

std::cout << "Area = " << s->Cet Area() const | Shape applies constness to the reference instead of the
<< std::endl; object being referenced. Unfortunately there is no elegayt

void WiteArea(ptr<l Shape> s)
{

to apply constness to the object. In [2bnst _vi ew<l Shape> is variables or implementation of member functions). Progrem

used to represent a reference type tem@st | Shape. that use ABCs have to be conscientious to avoid mixing iaterf
This problem disappears when using he <> syntax, be- and implementation inheritance.

causept r<const | Shape> associates constness with the object

rather than the pointer. 2.3.6 Not type intrusive

An object can be made to implement an interface regardless of
2.3 Advantages whether its methods are declared virtual and regardlesshat w
Many of the advantages of interfaces listed below are desdri bases class_es it derives from. One or more of the methodd coul
in [1]. even be static!

23.1 Space efficiency 2.3.7 V(v)at;jgcts can implement the same interface in different
Avoiding the vtable pointer in an object is particularly leéin

cial for applications that record large numbers of smaleoty in Objects can be made to implement the same interface in differ

memory. The overhead of dynamic polymorphism is only pa"ra_@t ways for different purposes. An example is given in sec-

when needed. For example, at a given point in time there coff 24 Where classDpl ayer is able to implement interface

be millions ofdi ¢l e objects in memory, and only a few are pe-But tonLi stener in two distinct ways in order to distinguish the

ing accessed by clients through an abstract interface. notifications it receives from its play and stop buttons.

2.32 Compiler optimisation 2.3.8 Avoidance of heap allocations

As a corollary of 2.3.7, it is shown in section 2.4 that indeds
Qilow for objects to be interconnected or “wired up™ withidhe
wiring itself being heap allocated.

Class methods are not declared virtual and therefore it iem
likely that the C/C++ compiler will optimise implementati®be-
cause it doesn’'t commit so quickly to the indirection asated
with a vtable look-up.

For example, in the following function the compiler has n@-4 CD Player example
need to generate a virtual call to Circle::GetArea(). TH&a Xcpp interfaces provide the means to *

. . _ wire up” software com-
aIIqw; it fco m—hng the method ca_ll - one of the most effeet|vponents far more elegantly and efficiently than with conieerat
optimisations available to a compiler.

C++ or with languages like C# and Java. The normal approach

f1 oat 64 Get ConeVol une(const Gircle& c, float64 is to heap allocate the wiring. For example, Java progranes of
hei ght) use anonymous inner classes while C# programs often use dele
{ ates for this purpose. The following example shows thaphea
return c.Get Area()~hei ght/3; 9 . purpose. 9 P . ap
} allocations are not necessary. In a complex system thisl tead

to significant performance gains.

If Gircle:: GetArea() is virtual then the compiler must per- This example shows how a CD Player can internally wire its
form further analysis to determine whether the method has belay and stop buttons to i® ay() andstop() methods. Con-
overridden in a derived class. Since it is always possikd¢ @h sider that the public header file Button.h defines an interfac
derived class is defined in a different DLL which is dynanigcall But tonLi stener. A client is expected to implement this in-
loaded at run time, it is generally impossible for the compilterface in order to receive a notification that a button hambe
to avoid the overhead of the virtual call without top-dowpey pressed.
analysis.

$interface |ButtonListener

voi d OnButtonPressed();
bé

Int_er_faces support_MuIt!pIe Inheritance (M) very effeetly apd Let Button.h also contain the following definition of class
efficiently. If required, interfaces can form complex Ml tae But ton -

chies. Also a class can support hundreds of interfaces utitho

2.3.3 Efficient multiple inheritance

any negative impact on performance. Object instances cever class Button

tain any vtable pointers and vtable pointers are only defaret Sl

initialised at the point where an interface pointer is reegli void Set Handl er (ptr <l ButtonLi st ener > h)
By contrast, using ABCs with complex inheritance hieragshi

leads to vtable pointer bloat in most C++ compilers. An exi@mp mhandl er = h;

}

is given in section 2.6 voi d Mbused i cked()

m_handl er - >OnBut t onPressed() ;

}
Object creation is faster because there are no vtable psitde p”p;’ft(féuttonu steners m handl er -
initialise. This has been found significant for classesgisiany }: - ’

virtual base classes with the Microsoft Visual C++ compiler

2.3.4 Object creation efficiency

A client callsset Handl er () in order to set the handler that re-
_ceives the notification message that the button has beesegres

It is assumed the GUI framework cal@mused i cked()
when the user clicks the mouse button while the mouse cursor
Interfaces always specify a set of abstract method defirstiand is over the button. The implementation afvused i cked()
never allow for implementation inheritance (either of m@mbsends a natification to the client that the button has beesspce

2.3.5 Forces a clean separation of interface and implemen
tation

2

Now consider the implementation obrl ayer , as follows:-

@nport "Button.h"
cl ass CDPl ayer

public:
CDPI ayer ()
struct Bl : public CDPlayer
voi d OnButtonPressed() {Play(5);}
}m'_pl ayBut t on. Set Handl er ((BlL#)this);
struct B2 : public CDPlayer

void OnButtonPressed() {Stop();}

b
m st opBut t on. Set Handl er ((B2x)this);
}
void Play(int speed);
voi d Stop();
private:

Button m pl ayButton;
Button m st opButton;

¥

Note how thecbrl ayer has twoButton member variables.

These need to be “wired up” so they call theay() andst op()

methods respectively.

The interesting idea is that we can write a struct cabed
that inherits fromcbrl ayer . This adds member functions but no
member variables (i.e. no state) to tte®l ayer class. Therefore
it is reasonable to reinterpretapl ayer as as1 which can in 2.6 Coloured circle using ABCs

turn be coerced into arBut t onLi st ener because it implements

OnBut t onPressed() as required.
The upshot is that thecorl ayer

OnBut t onPressed() notification from its play button.

can implement the
I ButtonLi st ener interface for the purposes of receiving th

Simi-

larly, the cDPl ayer can implement theBut t onLi st ener inter-

face again (and differently) for its stop button.

This technique is unconventional but very powerful and effi- ;.
cient. Unlike Java anonymous inner classes or C# deledates (

example) no heap allocation is required at all to allow adsutd

send a message to itspPl ayer .

2.5 Interface inheritance

Interfaces can inherit from each other. Multiple inheritars

fully supported. Only DAG structures are permitted. Forraxa

ple

$interface | Shape

float 64 Cet Area() const;
float 64 GetPerim) const;
B

$interface | Col ouredShape : | Shape

int32 GetCol our() const;
B

$interface ICrcle : |Shape

fl oat 64 Cet Radi us() const;

b
$interface |1 ColouredCircle :
| Col ouredShape, I1Crcle

{
b

Now consider the following struct in straight C++

struct Col ouredCircle

{

Col ouredCircl e() r(3.0), c(17) {}
float 64 GetArea() const {return 3.14*rxr;}
float64 GetPerim() const {return 2+3.14xr;}
float 64 GetRadius() const {return r;}
int32 GetColour() const {return c;}

float64 r;
int32 c;
be

This can be coerced into axdol our edGi r cl e as follows

Col ouredCircle c;
ptr<I Col ouredCircle> p = &c;

The pointerp can be implicit upcast to atr <l Shape>,
pt r <l Col our edShape> Orptr<ICircl e>.

Let a subinterface refer to either a directly or indi-
rectly inherited interface. For example, the subintergaoé
| Col our edCi rcl e arel Shape, | Col our edShape, | Circl e.

An interface inherits all the methods from its subinterfacg
pointer to an interface can be implicit upcast to a pointeartp
subinterface.

Sideways or downwards casting of interface pointers reguir
aqi cast <> but is only supported for interfaces that inherit from
| Obj ect (this is described below).

Repeated inheritance is supported, but only indirectly.e Th
following is not permitted

$interface Ix {};
$interface Iy : Ix,

Ix {}

/'l conpiler error

For the purpose of comparison, consider the following ccilegu
ABCs, where it has been assumed that virtual inheritancelgdho
glways be used for interface inheritance:

struct | Shape

{
virtual float64 GetArea() const = O;
virtual float64 GetPerin{) const = 0;

struct | Col ouredShape : public virtual | Shape
{
virtual int32 GetColour() const = O;
Ik
struct ICrcle : public virtual |Shape
virtual float64 GetRadius() const = 0;
Ik
struct |ColouredCircle :
public virtual | Col ouredShape,
public virtual ICrcle
{
struct ColouredCircle : public | ColouredCrcle
{

Col ouredCircl e() r(3.0), c(17) {}
float64 CetArea() const {return 3.14xrxr;}
float64 GetPerin() const {return 2+3. 14xr;}
float 64 CetRadius() const {return r;}
int32 CGetCol our() const {return c;}

float64 r;
int32 c;
bé

For the Microsoft Visual C++ compiler (VC 2008), the size
of ColouredCircle is 56 bytes. That is an enormous overhead
considering the member variables only take up 12 bytes.

2.7 The IObject interface

There is a special interface callethj ect defined as follows

$interface | Object

{
Anyl nterface Querylnterface(
const Reflectedlnterface& ri);
const Reflectedd ass&
Get Ref | ect edd ass() const;
void VisitObjects(lojectVisitor& v) const;
voi d OnGar bageCol | ect () ;
voi d Destroy();
Obj SysSt at e& Get SysState();
b

Xcpp allows for the keyword sa to be used to specify one
or more interfaces that are implemented by a given claasfstr
Each of the interfaces must inherit directly or indirecthprh
| Obj ect .

Xcpp will generate code to implement this interface impljci
For example

$struct X isa | oject {}; [

will compile successfully even though the methods@fj ect
haven't been explicitly implemented (nor should they).

Note that global variables, frame variables or member vari-
ables of classes are allowed to implementject. i.e. it
shouldn’t be assumed that only heap allocated objects are al
lowed to implement ovj ect , even though some of the function-
ality is specific to support for thespace garbage collector.

2.8 Querylinterface

The methoderyl nterface() is similar in purpose to the func-
tion of the same name in the Microsoft COM interfacgknown.
It allows a client to cast interface pointers.

Consider the following interface definitions

$interface Ix : | oject {};
$interface ly : | Object {};
$interface Iz : Ix,ly {};

$interface lw: | Object {};

Now suppose struct X implements |z as follows

$struct X isa lz {};

then the following code shows how we may cast between the
different interface pointers using cast <>.

X X;
ptr<ix> px = &X;

/'l qicast<> can be used to cast to any other
/'l supported interface
ptr<ly> py = gicast<ly>(px);

/] Casting to an interface that is not
/1 inplemented by the object returns null.
assert (qi cast<lw>(px) == null);

For a given object we could define a binary relation between
interfaces according to wheth@rcast will successfully take us
from one interface to another interface. It is guaranteadltthis
relation cannot change while a process is running, and tae re
tion will be reflexive, symmetric and transitive.

References

[1] Christopher Diggins,C++ with Interfaces, Dr. Dobb’s,
September 01,2004, http://ww. ddj.com cpp/
184401848.

[2] Jonathan Turkanis, Boost.Interfaces, http:// wwv.
coder age. conlinterfaces/

