
Xcpp Interfaces

David Barrett-Lennard
Cedanet Pty Ltd

Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

Xcpp adds support for interfaces to C++ without using virtual
functions. This article presents the syntax and discusses the ad-
vantages over using abstract base classes for dynamic polymor-
phism.

1 Overview

The xcpp preprocessor is applied to the source code before
subsequent compilation by a standard C/C++ compiler. The
$interface directive allows for dynamic polymorphic interfaces
to be defined, in a way that is more flexible and less type intrusive
than the normal support for dynamic polymorphism in C++.

The conventional approach to support interface-like function-
ality in C++ is to use abstract base classes (ABCs). Dynamic
polymorphism is typically achieved using a vtable pointer within
the object that implements the interface. An alternative approach
is for clients to hold a pair of pointers - i.e. a vtable pointer in
addition to the pointer to the actual object. This fully decouples
interface support from object implementation. The technique has
been described in the literature. See for example [1] and the
Boost Interfaces Library [2].

[1] points out that implementing an interface and supporting
overridable methods (i.e. redefinition in derived classes)are log-
ically distinct concepts, and therefore it is useful to separate these
concerns in the programming language.

2 $interface directive

2.1 Simple example

An interface is an abstract type only containing method decla-
rations and cannot be instantiated. The following declaresan
interface calledIShape:

$interface IShape
{

float64 GetArea() const;
float64 GetPerim() const;

};

An interface pointer to anIShape is designated by
ptr<IShape>. This wraps a pair of underlying pointers – a
pointer to an object and a pointer to a vtable appropriate to the
interface for that object. Given only the above interface defini-
tion it is possible to compile functions that can call theIShape

methods onany givenptr<IShape>. For example:

void WriteArea(ptr<IShape> s)
{

std::cout << "Area = " << s->GetArea()
<< std::endl;

}

In the literature this capability is generally referred to as dy-
namic polymorphism, because the one compiled implementation
of WriteArea() is able to call theGetArea() method onany class
that implements theIShape interface.

Now consider the following struct written in straight C++ (as-
suming an appropriate typedef for thefloat64):

struct Circle
{

Circle() : r(3.0) {}
float64 GetArea() const {return 3.14*r*r;}
float64 GetPerim() const {return 2*3.14*r;}
float64 r;

};

Notice thatCircle doesn’t inherit from any base classes. An
instance of aCircle class is only 8 bytes (the size of itsfloat64
memberr). There are no virtual methods so there is no vtable
pointer. Despite thatCircle is able to implement theIShape in-
terface, simply because it has implemented all theIShape meth-
ods with the required signature and semantics.

The coercion into an interface pointer is very simple:

Circle c;
ptr<IShape> s = &c; // Coercion to IShape
WriteArea(s);

or just

Circle c;
WriteArea(&c);

If Circle hadn’t implemented the methods in theIShape inter-
face then the attempted coercion would have resulted in acompile
time error.

Given one or more coercions fromCircle to IShape within a
given executable or DLL, the compiler generates a single static
vtable of pointers to functions corresponding to the declared
methods in theIShape interface. Each function takes a pointer
to a Circle object as the first argument (i.e. in addition to the
declared formal arguments). The run time overheads of coer-
cion are minimal - only requiring initialisation of the two point-
ers within theptr<IShape>: the address of the circle object and
the vtable pointer. This may only require twomov machine code
instructions.

The remarkable idea is that a polymorphic capability can be
post-applied to an object independently of its implementation.

2.2 Reason forptr<> construct

In [2] an interface likeIShape is a value type that represents a
reference to some object that implements the interface. Thetype
const IShape applies constness to the reference instead of the
object being referenced. Unfortunately there is no elegantway

1

to apply constness to the object. In [2],const_view<IShape> is
used to represent a reference type to aconst IShape.

This problem disappears when using theptr<> syntax, be-
causeptr<const IShape> associates constness with the object
rather than the pointer.

2.3 Advantages

Many of the advantages of interfaces listed below are described
in [1].

2.3.1 Space efficiency

Avoiding the vtable pointer in an object is particularly benefi-
cial for applications that record large numbers of small objects in
memory. The overhead of dynamic polymorphism is only paid
when needed. For example, at a given point in time there could
be millions ofCircle objects in memory, and only a few are be-
ing accessed by clients through an abstract interface.

2.3.2 Compiler optimisation

Class methods are not declared virtual and therefore it is more
likely that the C/C++ compiler will optimise implementations be-
cause it doesn’t commit so quickly to the indirection associated
with a vtable look-up.

For example, in the following function the compiler has no
need to generate a virtual call to Circle::GetArea(). This also
allows it to in-line the method call - one of the most effective
optimisations available to a compiler.

float64 GetConeVolume(const Circle& c, float64
height)

{
return c.GetArea()*height/3;

}

If Circle::GetArea() is virtual then the compiler must per-
form further analysis to determine whether the method has been
overridden in a derived class. Since it is always possible that a
derived class is defined in a different DLL which is dynamically
loaded at run time, it is generally impossible for the compiler
to avoid the overhead of the virtual call without top-down type
analysis.

2.3.3 Efficient multiple inheritance

Interfaces support Multiple Inheritance (MI) very effectively and
efficiently. If required, interfaces can form complex MI hierar-
chies. Also a class can support hundreds of interfaces without
any negative impact on performance. Object instances nevercon-
tain any vtable pointers and vtable pointers are only definedand
initialised at the point where an interface pointer is required.

By contrast, using ABCs with complex inheritance hierarchies
leads to vtable pointer bloat in most C++ compilers. An example
is given in section 2.6

2.3.4 Object creation efficiency

Object creation is faster because there are no vtable pointers to
initialise. This has been found significant for classes using many
virtual base classes with the Microsoft Visual C++ compiler.

2.3.5 Forces a clean separation of interface and implemen-
tation

Interfaces always specify a set of abstract method definitions, and
never allow for implementation inheritance (either of member

variables or implementation of member functions). Programmer
that use ABCs have to be conscientious to avoid mixing interface
and implementation inheritance.

2.3.6 Not type intrusive

An object can be made to implement an interface regardless of
whether its methods are declared virtual and regardless of what
bases classes it derives from. One or more of the methods could
even be static!

2.3.7 Objects can implement the same interface in different
ways

Objects can be made to implement the same interface in differ-
ent ways for different purposes. An example is given in sec-
tion 2.4 where classCDPlayer is able to implement interface
IButtonListener in two distinct ways in order to distinguish the
notifications it receives from its play and stop buttons.

2.3.8 Avoidance of heap allocations

As a corollary of 2.3.7, it is shown in section 2.4 that interfaces
allow for objects to be interconnected or “wired up”’ without the
wiring itself being heap allocated.

2.4 CD Player example

Xcpp interfaces provide the means to “wire up” software com-
ponents far more elegantly and efficiently than with conventional
C++ or with languages like C# and Java. The normal approach
is to heap allocate the wiring. For example, Java programs often
use anonymous inner classes while C# programs often use dele-
gates for this purpose. The following example shows that heap
allocations are not necessary. In a complex system this could lead
to significant performance gains.

This example shows how a CD Player can internally wire its
play and stop buttons to itsPlay() andStop() methods. Con-
sider that the public header file Button.h defines an interface
IButtonListener. A client is expected to implement this in-
terface in order to receive a notification that a button has been
pressed.

$interface IButtonListener
{

void OnButtonPressed();
};

Let Button.h also contain the following definition of class
Button :

class Button
{
public:

void SetHandler(ptr<IButtonListener> h)
{

m_handler = h;
}
void OnMouseClicked()
{

m_handler->OnButtonPressed();
}

private:
ptr<IButtonListener> m_handler;

};

A client callsSetHandler() in order to set the handler that re-
ceives the notification message that the button has been pressed.

It is assumed the GUI framework callsOnMouseClicked()
when the user clicks the mouse button while the mouse cursor
is over the button. The implementation ofOnMouseClicked()
sends a notification to the client that the button has been pressed.

2

Now consider the implementation ofCDPlayer, as follows:-

@import "Button.h"

class CDPlayer
{
public:

CDPlayer()
{
struct B1 : public CDPlayer
{

void OnButtonPressed() {Play(5);}
};
m_playButton.SetHandler((B1*)this);

struct B2 : public CDPlayer
{

void OnButtonPressed() {Stop();}
};
m_stopButton.SetHandler((B2*)this);

}

void Play(int speed);
void Stop();

private:
Button m_playButton;
Button m_stopButton;

};

Note how theCDPlayer has twoButton member variables.
These need to be “wired up” so they call thePlay() andStop()
methods respectively.

The interesting idea is that we can write a struct calledB1

that inherits fromCDPlayer. This adds member functions but no
member variables (i.e. no state) to theCDPlayer class. Therefore
it is reasonable to reinterpret aCDPlayer as aB1 which can in
turn be coerced into anIButtonListener because it implements
OnButtonPressed() as required.

The upshot is that theCDPlayer can implement the
IButtonListener interface for the purposes of receiving the
OnButtonPressed() notification from its play button. Simi-
larly, the CDPlayer can implement theIButtonListener inter-
face again (and differently) for its stop button.

This technique is unconventional but very powerful and effi-
cient. Unlike Java anonymous inner classes or C# delegates (for
example) no heap allocation is required at all to allow a button to
send a message to itsCDPlayer.

2.5 Interface inheritance

Interfaces can inherit from each other. Multiple inheritance is
fully supported. Only DAG structures are permitted. For exam-
ple

$interface IShape
{

float64 GetArea() const;
float64 GetPerim() const;

};
$interface IColouredShape : IShape
{

int32 GetColour() const;
};
$interface ICircle : IShape
{

float64 GetRadius() const;
};
$interface IColouredCircle :

IColouredShape, ICircle
{
};

Now consider the following struct in straight C++

struct ColouredCircle
{

ColouredCircle() : r(3.0), c(17) {}
float64 GetArea() const {return 3.14*r*r;}
float64 GetPerim() const {return 2*3.14*r;}
float64 GetRadius() const {return r;}
int32 GetColour() const {return c;}

float64 r;
int32 c;

};

This can be coerced into anIColouredCircle as follows

ColouredCircle c;
ptr<IColouredCircle> p = &c;

The pointer p can be implicit upcast to aptr<IShape>,
ptr<IColouredShape> or ptr<ICircle>.

Let a subinterface refer to either a directly or indi-
rectly inherited interface. For example, the subinterfaces of
IColouredCircle areIShape, IColouredShape, ICircle.

An interface inherits all the methods from its subinterfaces. A
pointer to an interface can be implicit upcast to a pointer toany
subinterface.

Sideways or downwards casting of interface pointers requires
a qicast<> but is only supported for interfaces that inherit from
IObject (this is described below).

Repeated inheritance is supported, but only indirectly. The
following is not permitted

$interface Ix {};
$interface Iy : Ix, Ix {} // compiler error

2.6 Coloured circle using ABCs

For the purpose of comparison, consider the following code using
ABCs, where it has been assumed that virtual inheritance should
always be used for interface inheritance:

struct IShape
{

virtual float64 GetArea() const = 0;
virtual float64 GetPerim() const = 0;

};
struct IColouredShape : public virtual IShape
{

virtual int32 GetColour() const = 0;
};
struct ICircle : public virtual IShape
{

virtual float64 GetRadius() const = 0;
};
struct IColouredCircle :

public virtual IColouredShape,
public virtual ICircle

{
};
struct ColouredCircle : public IColouredCircle
{

ColouredCircle() : r(3.0), c(17) {}
float64 GetArea() const {return 3.14*r*r;}
float64 GetPerim() const {return 2*3.14*r;}
float64 GetRadius() const {return r;}
int32 GetColour() const {return c;}

float64 r;
int32 c;

};

For the Microsoft Visual C++ compiler (VC 2008), the size
of ColouredCircle is 56 bytes. That is an enormous overhead
considering the member variables only take up 12 bytes.

2.7 The IObject interface

There is a special interface calledIObject defined as follows

3

$interface IObject
{

AnyInterface QueryInterface(
const ReflectedInterface& ri);

const ReflectedClass&
GetReflectedClass() const;

void VisitObjects(IObjectVisitor& v) const;
void OnGarbageCollect();
void Destroy();
ObjSysState& GetSysState();

};

Xcpp allows for the keywordisa to be used to specify one
or more interfaces that are implemented by a given class/struct.
Each of the interfaces must inherit directly or indirectly from
IObject.

Xcpp will generate code to implement this interface implicitly.
For example

$struct X isa IObject {};

will compile successfully even though the methods ofIObject

haven’t been explicitly implemented (nor should they).
Note that global variables, frame variables or member vari-

ables of classes are allowed to implementIObject. i.e. it
shouldn’t be assumed that only heap allocated objects are al-
lowed to implementIObject, even though some of the function-
ality is specific to support for theCSpace garbage collector.

2.8 QueryInterface

The methodQueryInterface() is similar in purpose to the func-
tion of the same name in the Microsoft COM interfaceIUnknown.
It allows a client to cast interface pointers.

Consider the following interface definitions

$interface Ix : IObject {};
$interface Iy : IObject {};
$interface Iz : Ix,Iy {};
$interface Iw : IObject {};

Now suppose struct X implements Iz as follows

$struct X isa Iz {};

then the following code shows how we may cast between the
different interface pointers usingqicast<>.

X x;
ptr<Ix> px = &x;

// qicast<> can be used to cast to any other
// supported interface
ptr<Iy> py = qicast<Iy>(px);

// Casting to an interface that is not
// implemented by the object returns null.
assert(qicast<Iw>(px) == null);

For a given object we could define a binary relation between
interfaces according to whetherqicast will successfully take us
from one interface to another interface. It is guaranteed that this
relation cannot change while a process is running, and the rela-
tion will be reflexive, symmetric and transitive.

References

[1] Christopher Diggins,C++ with Interfaces, Dr. Dobb’s,
September 01,2004, http://www.ddj.com/cpp/

184401848.

[2] Jonathan Turkanis, Boost.Interfaces, http://www.

coderage.com/interfaces/

4

