
Xcpp Build System

David Barrett-Lennard
Cedanet Pty Ltd

Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

This article describes the Xcpp Build System which allows devel-
opers to conveniently and flexibly define Microsoft Visual C++
projects and solutions using simple text files written in a custom
language.

1 Overview

The Xcpp Build Systemprovides a convenient and flexible
means to create and edit C++ projects and solutions that target
the Microsoft Visual C++ Integrated Development Environment
(MSVC).

In earlier versions of MSVC, projects are recorded in text files
with adsp extension, and workspaces in text files with adsw ex-
tension. Later versions of MSVC (from Visual C++ 7.0, released
in 2002) use XML files (with extensionvcproj for project files
andsln for solution files). A solution is essentially a workspace.

Developers don’t normally edit these.vcproj and .sln
XML files directly. Doing so would be inconvenient – because
the format is verbose and repetitive. For example, there is no
means to apply compiler switches to all configurations at once.

Instead MSVC provides wizards to create new projects and so-
lutions, and sophisticated GUIs to edit the settings. One unfortu-
nate result of this is that most developers don’t tend to factor out
the build settings across projects even though MSVC supports a
concept of inheritance of project settings. It seems that normal
practice tends to be dictated by the wizards, and the wizardsdon’t
promote sharing of settings amongst projects.

The Xcpp build system allows developers to create textual rep-
resentations of projects and workspaces, in files with extensions
xcpj andxcws respectively. These textual representations are
written in a custom designed language that is simple, elegant,
flexible and very concise. It promotes sharing of build settings
with the result that a given project typically only needs to specify
the files in that project (because all the compiler switches,linker
switches and configurations are inherited using an@import di-
rective).

It is claimed that the textual representation ends up being eas-
ier and simpler than the MSVC approach based on GUI editing
of settings. This advantage is greatest when there are largeteams
and complex configuration requirements.

The Xcpp Build Systemcalculates.vcproj and.sln files
from the.xcpj and.xcws files. Therefore developers can edit,
build and debug projects/solutions in MSVC in the normal way
with no limitations whatsoever.

2 Guiding principles

2.1 Exporting targets

Typically when a DLL is formally packaged and released only
the following files areexported:

• The public header files

• Documentation of the API, perhaps with demonstration pro-
grams.

• The.lib file, which is needed when static linking to the
library

• The.dll file.

A potential disadvantage to a client is that they cannot easily
debug into the DLL without the original source code. Further-
more the client has in effect only been granted read access tothe
DLL, because without the source code they cannot make changes
to the source code and rebuild the DLL. Nevertheless, a formally
released DLL is very common and has a number of advantages:

• Space efficiency - no need to provide all the source code,
supporting unit tests, design documentation etc.

• Hiding of intellectual property

• Clients don’t need to compile the DLL

• Helps to define formal releases that have passed quality con-
trol (i.e. release engineering)

• Developers have very clear boundaries, and more impor-
tantly well defined areas of responsibility. When develop-
ment of a library is shared across hundreds of developers
there is a tendency for no-one to take responsibility for qual-
ity.

This choice is particularly relevant to very large teams of de-
velopers. Should they use solutions that allow all source code to
be built by all developers, or should packaging and releasing of
DLLs be formalised internally within the team? For very large
companies the latter approach must be employed to some degree
because having every developer build all the source code isn’t
scalable.

MSVC.vcproj and.sln files are influenced by this choice
because there is a distinction between explicit linking to agiven
.lib file versus declaring a dependency between projects.

By contrast the Xcpp build system makes this choice orthogo-
nal to the representation of the.xcpj and.xcws files. There-
fore the same files can be used to either build a large solution
containing all the source code, or else a smaller solution where
some of the projects don’t appear, instead using explicit linking
to the released.lib files.

1

2.2 A global logical tree

It is common practice for build systems or source code reposi-
tories to use a directory named something like “ThirdParty”for
where to place external projects. For example, company X may
consider that any DLL created by company Y should be placed
under “ThirdParty”. We reject this notion, because it leadsto in-
consistency in the logical placement of files, and thereforecom-
plexity in the way include and library paths are defined. More
importantly it hurts the ability to share and reuse project and
workspace files.

We follow the principle that a single logical directory struc-
ture holds all source code to be written. This logical structure is
defined without regard for the requirements of a particular devel-
oper (or even a company). For example, the structure is indepen-
dent of:

• what projects are physically stored on a given machine;

• what projects are being built and packaged; and

• who is packaging the projects and why.

In this article we use$ to refer to the one and only root of
this logical tree. Alogical pathrefers to a path in the logical tree
relative to$. In order to avoid name clashes a company may want
to locate their projects under a directory based on the company
name.

2.3 Physical trees

The logical tree is only an abstraction in the sense that it encom-
passes all projects written at all times by all developers (hoping
that name clashes won’t occur). Therefore it is only ever possi-
ble to physically store some subset of the logical tree on a real
computer. We call this aphysical tree. The root of a physical
tree must always correspond to the root$ of the logical tree. It
is convenient to identify a physical tree by the physical location
of its root. Let$1, $2, etc to refer to local paths on a real com-
puter that identify physical locations of the root nodes of physical
trees. E.g. a developer may store three distinct physical trees on
their computer:

$1 = c:/dev/head
$2 = c:/dev/experiment
$3 = d:/devroot/catscan_1_0

For a file with absolute pathc:/dev/head/x/y/z, we regard
this path as the concatenation of an absolute path to a physi-
cal tree (i.e.$1 = c:/dev/head) and a logical path (i.e.x/y/z
which is the path relative to the root of the physical tree). There-
fore we say thatx/y/z is the file’s logical path.

It is allowed (but not required) that each of these physical trees
be working sets associated with particular branches or tagged
versions stored within particular source code repositories. As
such it is typically possible to independently commit/update from
these distinct physical trees.

Note that source code repository systems do not normally al-
low for “mounting” parts of physical trees of one repositoryinto
the physical tree associated with another repository (especially
when it involves a different vendor). In general it’s appropriate
to assume that working sets checked out of source code reposito-
ries represent distinct trees of directories and files on a developer
machine.

Generally it is expected that a source code repository stores an
entire physical tree (i.e. that includes$), rather than only some
sub-tree strictly below$. One reason for doing so is a practical
one: If we always store a physical tree rooted at$ in a repository

and in a working set we can always check out, commit changes,
update, and tag the whole physical tree in a single, convenient
and atomic operation.

2.4 Virtual Tree

In this section we define a concept of taking the union of anor-
deredsequence of physical trees. We call this avirtual treebe-
cause the build system doesn’t materialise it. The concept of
a virtual tree provides the basis for combining together source
code from different sources in a well defined manner, without
the need for specialised support from the file system (such as
symbolic links to mount directories).

For example,[$1,$2,$3] denotes a virtual tree which contains
the union of all the directories and files from$1, $2 and$3. In the
case where there are multiple candidate files with the same log-
ical path, the winner is the file in the physical tree that appears
first in the ordered sequence of physical trees. Note that there
are some obvious similarities with the ordered sequence ofaddi-
tional include pathsused by C/C++ compilers. E.g. if$2 and$3
(but not$1) store a file with the logical pathCatScanner/Image.h
then only the file under$2 is the one that is said to exist in the
virtual tree, because files in$2 always take precedence over cor-
responding files from$3.

This approach is elegant because a virtual tree is represented
very simply as an ordered list of paths, without the need to
specify locations for where to logically mount one physicaltree
within another. There is a tiny overhead in that source code must
physically appear in context under appropriate containingdirec-
tories (because the full logical path must be physically realised).
However it is argued that making that context physically explicit
helps to document the intention more easily than adhoc alterna-
tives.

An MSVC solution is calculated by providing both the follow-
ing:

1. A virtual tree (specified with an ordered list of paths); and

2. The logical path to a Xcpp workspace (.xcws) file.

The given virtual tree designates theinput to the build pro-
cess for the solution. All Xcpp workspace and project (.xcws,
.xcpj) files exist in this virtual tree and therefore can be
uniquely identified by a logical path. Workspace files always
reference project files (and nested workspace files) using logi-
cal paths. Project files always reference subprojects usinglogical
paths. Physically however it means for example that a workspace
file on drive d: could end up referencing a project on drive e:

2.5 Dealing with versioning of DLLs

Consider that we want to store four distinct exported versions of
the CadStar project on our computer. No problem! We simply
use four distinct physical trees. E.g.

$1 = c:/dev/CadStar/V1.0
$2 = c:/dev/CadStar/V1.1
$3 = c:/dev/CadStar/V1.2
$4 = e:/dev/CadStar/V2.0

These are physical paths to physical trees and therefore the
convention for organising these directories on the hard-disk or
in a given repository is outside the scope of this article. Some
users for example may simply use a large flat list under a single
directory. Other users will want to organise the physical trees in a
structure using directories. It is of course permissible (and in fact
recommended) for this structure to be recorded in a source code
repository, i.e. so development teams share the same structure).

2

A virtual tree references a given physical tree using a local
physical path. It follows that any number of distinct virtual trees
can reference the same physical tree. In other words the virtual
tree idea promotes sharing. For example, V1.2 of CadStar only
needs to be stored once on a given development machine, and yet
it can be used by many different build environments.

Often a given physical tree holds some exported projects.
The nice feature is that the full directory structures are always
recorded relative to$, which eliminates the need for the de-
veloper to manually specify where physical trees need to be
“mounted”. This largely automates the process of bringing a
wide range and disparate set of third party software libraries to-
gether to form a build environment. All the user needs to do is
specify a virtual tree - i.e. an ordered sequence of local paths to
physical trees.

Xcpp project and workspace files are written in a way that is
completely independent of versioning concerns. i.e. we never see
anything like a version number in either type of file. This helps to
ensure that different developers can build the same projectin dif-
ferent ways, and not be “fighting” with each other when editing
.xcpj or .xcws files.

A Xcpp workspace can define what projects to package, but
doesn’t try to stipulate what versions of what projects to pack-
age. Version information is instead managed by the developer
when specifying the virtual tree to be used for a given build en-
vironment.

2.6 Multiple repositories can hold the same ex-
ports

Only one entity (e.g. a company or a developer) will formally
export version X of library Y. Therefore everyone in the world
should be able to agree on what that export actually is. It is
therefore appropriate to check-in a given export into any number
of distinct source code repositories. It shouldn’t create confusion
because they should all be identical. This is important to allow
for a given repository to be self sufficient or autonomous (e.g. to
allow developers to build software despite only having access to
a single repository).

2.7 Build and export directories

In order to build an MSVC solution the following must be given:

1. The logical path of the.xcws workspace file

2. A virtual tree (defined by an ordered list of paths to physical
trees), treated as theinput for the build process.

3. The path to thebuild directory(used for all generated inter-
mediate files that are output by the build process)

4. The path to theexport directory, used to store the useful
output of the build process.

This information on a given development machine corresponds
to a particularbuild environment.

A virtual tree represents the input to the build process. The
output of the build process appears under the build and export
directories. To avoid any confusion the output of the build is
written to a completely separate area which doesn’t overlapwith
the input. i.e. it is assumed that the build and export directories
are not contained within any of the physical trees specified in the
input virtual tree.

For a given solution, the output of the build is written to either
the build directory to hold the intermediate build files, or else

the export directory to hold the output files of the build thatare
packaged in a formal release.

The build directory contains intermediate build files such as
.obj and.pch files. To avoid name clashes.obj files are
organised under directories according to project name, platform
and configuration. It is assumed that filenames are unique within
a given project but not across projects.

Since the.vcproj and.sln files are calculated they are
also treated as intermediate files to be stored in the build direc-
tory.

2.8 Chained builds

A vital concept is that the output of one build process can serve
as part of the input to another. The export directory is organised
as a physical tree that can be used to help define another virtual
tree, such that the exported libraries are available as inputs for
another MSVC solution. It follows that paths down from the
export directory can be regarded as logical paths.

When a.xcws file is used to generate MSVC.vcproj and
.sln files, the result depends on whether original or exported
versions of projects are found within the input virtual tree. The
virtual tree is not defined by the.xcws file, so the same.xcws
file can generate quite different development environmentsto suit
the needs of the individual developer.

When a project is exported, a.xcpj file is written to the ex-
port directory with the same logical path as the original.xcpj
file. This file resembles the original except it only lists thepub-
lic files of the project (this is achieved by simply assuming that
everything under a directory namedsrc isn’t public and there-
fore isn’t exported). It also inserts the keywordexport into the
exported version of the.xcpj file to flag it as exported.

When generating an MSVC solution that links against an ex-
ported library, it is possible to generate a utility.vcproj project
file that conveniently allows the (read only) public header files
to be viewed by the developer. This option is available through
thesolutionContainsPrepackagedProjects flag that
can be assigned in a.xcpp configuration file (see section 5.1).

2.9 Public header files

The Xcpp Build System sets up additional includes for the com-
piler that match the sequence of paths to the physical trees in the
input virtual tree. When a programmer uses a#include direc-
tive to a public header file in a different project, a logical path
to the header file is recommended. This will always bind to the
appropriate file in the virtual tree.

Libraries typically define one or more public header files that
are regarded as part of the output of the build to be exported.The
Xcpp build system supports the copying of public header files
from the input virtual tree to the output export directory. This
is done without changing the relative path from the root of the
virtual tree. Therefore public header files in the export direc-
tory have the same logical path as they do in the input virtual
tree. This allows dependent projects to be build either against the
original source code or else the packaged version with no need to
worry about additional includes.

3 Xcpp Project Files

An Xcpp project file typically has extensionxcpj, and is the
counterpart to a MSVC.vcproj file. It specifies all the com-
piler and linker command line options and the set of project files
to be compiled and linked to build a single target. Unlike a
.vcproj file, a.xcpj file is intended to be directly edited by

3

the user. A.vcproj file can be automatically generated from a
given.xcpj file. The grammar is presented in the appendix.

A lexical scanner similar to the one used for the C program-
ming language is used. It allows the use of//... or /*...*/
comments throughout the file. White space between tokens is
not generally significant.

In general paths within.xcpj and.xcws files must use for-
ward slashes (not backslashes). It is an error to include a leading
or trailing slash in a path.

Every.xcpj file is comprised of the following three sections:

1. The definitions of$TARGET_TYPE and$ROOT_TO_PROJDIR

2. Specification of the configurations, the compiler and
linker switches for each configuration across the
project, and the sub-projects. The following directives
can appear (any number of times and in any order):
@import, config{...}, +cpp{...}, -cpp{...},

+rc{...}, -rc{...}, +link{...}, -link{...},

subproj{...}, directories, prebuildevent{...},

prelinkevent{...}, postbuildevent{...},

toolFiles{...}, general{...}.

3. The set of files in the project, in the form of a tree struc-
ture using curly braces to represent nested directories. See
section 3.13.

3.1 Target types

There are five possible types of target for a given project. The tar-
get type is represented in a variable named$TARGET_TYPE which
must be defined at the beginning of an.xcpj file and which can
take on one of the following double quoted string values:

"Application"
"Static Library"
"Console Application"
"Dynamic-Link Library"
"Utility Project"

The predefined variable$TGT_EXTENSION is calculated auto-
matically from the specified target type. This takes on the value
"exe" for an application,"lib" for a static library or"dll" for a
dynamic link library.

3.2 Project directory

It is assumed every project is uniquely identified by the log-
ical path to itsproject directory. Normally all the files in a
project live in the tree rooted at the project directory. Immedi-
ately after the definition of$TARGET_TYPE, an.xcpj file must
define the variable$ROOT_TO_PROJDIR which specifies the logi-
cal path to the project directory. A predefined variable named
$PROJDIR_TO_ROOT is automatically calculated as the inverse of
$ROOT_TO_PROJDIR.

By convention the name of the project directory is regarded
as theproject name. It is not assumed that project names are
globally unique. However this assumption is made within a
given solution. The project name is implied from the value of
$ROOT_TO_PROJDIR (i.e. it is always the last directory name in
this path). The project name is automatically made available in a
variable named$PROJNAME.

Files that are not exported are conventionally stored undera
directory namedsrc under the project directory.

For example if $PROJDIR_TO_ROOT="x/y/z" then
$PROJNAME="z" and $PROJDIR_TO_ROOT="../../..". Also
it is assumed that the associated.xcpj file will have logical
pathx/y/z/src/z.xcpj. This convention is used for all projects.

3.3 Using the Xcpp Macro Preprocessor

The Xcpp Macro Preprocessor[1] is applied to the.xcpj file
before it is parsed. For example it is possible to declare macros
of the form

@def name = substitution-string

The preprocessor also provides@if-@else directives, mak-
ing it possible to conditionally define configurations, compiler
switches etc. Note however that it is not expected that the pre-
processor needs to be used very often, if at all.

3.4 Variables

A variable is defined like this

$name = "my string value"

Variables can be defined in both.xcpj and.xcpp files. A
variable can be reassigned a new value. Currently variablescan
only be “invoked” from within string literals (meaning thatthe
variable reference of the form$(name) is replaced with its current
value within the string literal, rather like a macro substitution).
Note that the brackets are used in a reference but not a definition
of a variable. E.g.

+link
{
/OUT:"$(EXPORT)/$(PLATFORM)/$(CONFIG)/

$(PROJNAME).$(TGT_EXTENSION)"
}

The variables defined in the.xcpp file (but not the.xcpj
file itself) are made available as macros to the Xcpp Macro Pre-
processor by enclosing the variable name in underscores. E.g.
there are macros named_EXPORT_ and_PLATFORM_.

3.4.1 Predefined variables

The following variables are predefined:

• $(PROJNAME) - the name of the project.

• $(EXPORT) - the path to the export directory relative to the
build directory.

• $(TARGET_TYPE) - The type of target to be built

• $(TGT_EXTENSION) - Either"exe", "dll" or "lib" depend-
ing on$TARGET_TYPE.

• $(ROOT_TO_PROJDIR) - The path from the virtual tree root
to the project directory.

• $(PROJDIR_TO_ROOT) - The path from the project directory
to the virtual tree root.

• $(PLATFORM) - The name of the platform. E.g."Win32" or
"Pocket PC 2003 (ARMV4)"

• $(CONFIG) - The name of the configuration - typically either
"Release" or "Debug".

3.5 Example of a .xcpj file

The following Xcpp project file (.xcpj), located at
Ceda/cxPython/src/cxPython.xcpj is used to build cx-
Python.dll:

4

$TARGET_TYPE = "Dynamic-Link Library"
$ROOT_TO_PROJDIR = "Ceda/Core/cxPython"
xcpp

@import "Ceda/BaseDefaults.xcpjh"
@import "Ceda/LinkPython.xcpjh"

subproj
{

"Ceda/Core/cxUtils"
"Ceda/Core/cxObject"

}

{
"src"
{

"AssignFromPyObject.cpp"
"BootStrapCedaModule.cpp"
"BoxInt64.cpp"
"BoxInt64.h"
"Utility.cpp"
"Utility.h"
"WrapEnum.cpp"
"WrapNameSpace.cpp"
"WrapClass.cpp"
"WrapGlobalFunction.cpp"
"WrapPointerValue.cpp"
"WrapArrayVar.cpp"
"WrapVariable.cpp"
"WrapCedaBuiltInType.cpp"
"WrapClassVariable.cpp"
"WrapVector.cpp"
"WrapAttributeOnInterfacePtr.cpp"
"WrapInterfacePtr.cpp"
"WrapMethodOnInterfacePtr.cpp"
"WrapMethodOnClassVariable.cpp"
"WrapModelStructVar.cpp"
"WrapModelArrayVar.cpp"
"WrapModelVectorVar.cpp"
"cxPython.cpp"
"cxPython.rc"
"Resource.h"
"StdAfx.cpp" : +cpp { /Yc"StdAfx.h" }
"StdAfx.h"

}
"cxPython.h"

}

3.6 Importing files

Normally a project imports the configurations and the compiler
and linker switches from another file, avoiding the need to repeat
these settings in every project.

An imported file can in turn import other files and so on indef-
initely (as long as there is no cycle). An imported file may define
macros and variables that are visible from the file that issues the
import directive. Also an imported file can define configurations,
apply compiler and linker switches and add subprojects.

An imported file normally only represents a part of a project
file, and the convention is to use the extensionxcpjh instead of
xcpj.

Typically a logical path to the file to imported is used. The file
will be searched in the virtual tree accordingly. Alternatively a
path that is relative to the physical location of the file containing
the@import directive may be used.

3.7 Configuration set

The following is an example of how to define the set of configu-
rations:

config
{

"Debug|Win32" ["MBCS"]
"Release|Win32" ["MBCS"]

"Debug Unicode|Win32" ["Debug" "Unicode"]
"Release Unicode|Win32" ["Release" "Unicode"]
"Debug|Pocket PC 2003 (ARMV4)" ["WinCE"]
"Release|Pocket PC 2003 (ARMV4)" ["WinCE"]
"Debug|Smartphone 2003 (ARMV4)" ["WinCE"]
"Release|Smartphone 2003 (ARMV4)" ["WinCE"]

}

Each entry is of the form"config|platform" plus optionally a
list of any number of white space delimited tags in square brack-
ets. In the above case there are 6 configurations and 3 platforms.
The tag"WinCE" has been applied to the last 4 configurations.

For a given entry of the form"config|platform", the config
is available in a variable named$(CONFIG) and the platform in
a variable named$(PLATFORM). E.g. the platform and config
names can be used to specify the output file of the linker:

+link
{
/OUT:"$(EXPORT)/$(PLATFORM)/$(CONFIG)/

$(PROJNAME).$(TGT_EXTENSION)"
}

A config block can be repeated to add more and more config-
urations. This can be useful in a@import file which specifies a
base set of configurations, yet allows projects to add additional
configurations.

Unfortunately in both versions of MSVC that were tried (VC
2005 and VC 2008) the IDE allows the user to select configura-
tions that were never defined, such as

Debug Unicode|Pocket PC 2003 (ARMV4)

VC even allows the user to try to build it! Not surprisingly
the build fails (e.g. because the additional includes aren’t even
defined).

Note that a configuration that targets Win32mustname the
platform"Win32" or else MSVC gets upset. It is unknown why
this is the case given that every imaginable setting is specified
explicitly in the.vcproj file, raising the question of why the
platform name is significant.

3.8 Configuration lists

Compiler and linker switches can be applied to particular config-
urations, expressed using combinations of the following:

• Configuration names (such as"Debug" or "Release")

• Platform names (such as"Win32" or "Pocket PC 2003

(ARMV4)"

• Configuration tags (such as"WinCE", "MBCS" or "Unicode")

• Compiler version names (such as"VC8" or "VC9")

• Target types (i.e. values of$TARGET_TYPE such as
"Application" or "Dynamic-Link Library")

As an example, the following switches are applied to all con-
figurations named"Release" (i.e. irrespective of the target type,
platform and compiler)

+cpp("Release")
{
/Ot
/FD
/D "NDEBUG"

}

+link("Release")
{
/PROFILE
/MAP:"$(EXPORT)/$(PLATFORM)/$(CONFIG)/

5

$(PROJNAME).map"
/INCREMENTAL:NO
/OPT:
/OPT:ICF

}

Even though there is some risk of confusion to a C/C++
programmer,’|’ denotes a logical ANDing. This is done
because Microsoft have set a precedent for using the syntax
config|platform for a particular configuration on a partic-
ular platform.

E.g the following switch is applied to the configuration
"Release" for platform"Win32"

+cpp("Release|Win32")
{

/MD
}

The order doesn’t matter - the following works just as well:

+cpp("Win32|Release")
{

/MD
}

In fact any of the specifiers can be ANDed in this way. E.g.
we can use a tag name:

+cpp("Release|WinCE")
{

/MT
}

A comma delimited list of strings is used for logical ORing.
E.g.

+cpp(
"Debug|WinCE|Console Application|VC9",
"Debug|Win32|Application")

{
/MTd

}

3.9 C++ Compiler switches

Compiler switches can be incrementally added (using+cpp) or
removed (with-cpp) in a top to bottom reading of the.xcpj
file. For example:

+cpp
{

/nologo /W3 /Zm500 /Zi /EHsc
/D "_CRT_SECURE_NO_DEPRECATE"
/Yu"StdAfx.h"
/Fp"./$(PLATFORM)/$(CONFIG)/$(PROJNAME)/

$(PROJNAME).pch"
/Fo"./$(PLATFORM)/$(CONFIG)/$(PROJNAME)/"
/Fd"./$(PLATFORM)/$(CONFIG)/$(PROJNAME)/"

}

+cpp("Application", "Static Library",
"Dynamic-Link Library")

{
/D "_WINDOWS"

}

+cpp("Console Application")
{

/D "_CONSOLE"
}

+cpp("Static Library", "Dynamic-Link Library")
{

/D "_WINDLL"
/D "$(PROJNAME)_EXPORTS"

}

+cpp("MBCS")

{
/D "_MBCS"

}

+cpp("Unicode", "WinCE")
{
/D "_UNICODE" /D "UNICODE"

}

+cpp("Win32")
{
/fp:precise /D "WIN32"

}

+cpp("WinCE")
{
/Os /GR /fp:fast
/D "_WIN32_WCE=0x420"
/D "UNDER_CE"
/D "WINCE"
/D "WINDOWSCE_DLL_EXPORTS"
/D "ARM"
/D "_ARM_"
/D "_WINDLL"

}

+cpp("Pocket PC 2003 (ARMV4)")
{
/D "WIN32_PLATFORM_PSPC"

}

+cpp("Smartphone 2003 (ARMV4)")
{
/D "WIN32_PLATFORM_WFSP"

}

+cpp("Release")
{
/Ot /FD /D "NDEBUG"

}

+cpp("Debug")
{
/Od /Gm /RTC1
/D "_DEBUG" /D "DEBUG"

}

+cpp("Release|Win32") { /MD }
+cpp("Debug|Win32") { /MDd }
+cpp("Release|WinCE") { /MT }
+cpp("Debug|WinCE") { /MTd }

The compiler switches are additive, making it easy to put com-
mon switches in a imported file.

Note the following:

• Compiler switches can be added across all configurations or
else a given subset of the configurations.

• Variables can be specified in the form$(name) within the
strings and they are automatically expanded like a macro.

• When specifying relative paths (e.g. for the switches/I,
/Fp, /Fo and/Fd), it is assumed that paths are absolute or
else relative to the location of the generated.vcproj file,
which is the build directory.

• +cpp {...}, -cpp {...} can be used to add or remove
compiler switches to all files in the project, or else to in-
dividual files in the project.

• There is support for per file per configuration compiler
switches. See section 3.13.12.

3.9.1 C++ additional include paths

For each project it’s implicit that the following are in the addi-
tional include paths:

6

• The project directory

• Thesrc directory under the project directory

Additional directories can be added to the include paths using
the/I switch. For example:

+cpp
{

/I "$(VIRTUAL_TREE)"
/I "c:/dev/boost"

}

A path is absolute or else relative to the build directory. Ifa
path begins with$(VIRTUAL_TREE), then a special kind of macro
substitution is performed, where the whole path is repeatedsuch
that the prefix$(VIRTUAL_TREE) is replaced by the path to each
physical root specified in the virtual tree in turn.

3.10 Resource compiler switches

+rc {...} and-rc {...} blocks are used to define the resource
compiler switches. For example:

+rc
{

/d "_DEBUG"
/l 0xc09 /x /v
/I "thirdparty/gadgets/include"

}

+rc("WinCE")
{

/d "_WIN32_WCE"
/d "$(CEVER)"
/d "UNDER_CE"
/d "$(PLATFORMDEFINES)"

}

3.11 Linker switches

The following shows an example of specifying the linker com-
mand line options

+link
{

/OUT:"$(EXPORT)/$(PLATFORM)/$(CONFIG)/
$(PROJNAME).$(TGT_EXTENSION)"

/PDB:"$(EXPORT)/$(PLATFORM)/$(CONFIG)/
$(PROJNAME).pdb"

/LARGEADDRESSAWARE
/DEBUG
/NOLOGO

}

+link("Dynamic-Link Library")
{

/DLL
/IMPLIB:"$(EXPORT)/$(PLATFORM)/$(CONFIG)/

$(PROJNAME)/$(PROJNAME).lib"
}

+link("Release")
{

/PROFILE
/MAP:"$(EXPORT)/$(PLATFORM)/$(CONFIG)/

$(PROJNAME).map"
/INCREMENTAL:NO
/OPT:REF /OPT:ICF

}

+link("Debug")
{

/INCREMENTAL
}

+link("Console Application")

{
/SUBSYSTEM:CONSOLE

}

+link("Application|Win32")
{
/SUBSYSTEM:WINDOWS

}

+link("Win32")
{
/MACHINE:X86
/MANIFEST
/MANIFESTFILE:"$(PLATFORM)/$(CONFIG)/

$(PROJNAME)/$(PROJNAME).$(TGT_EXTENSION)
.intermediate.manifest"

"kernel32.lib"
"user32.lib"
"gdi32.lib"
"winspool.lib"
"comdlg32.lib"
"advapi32.lib"
"shell32.lib"
"ole32.lib"
"oleaut32.lib"
"uuid.lib"
"odbc32.lib"
"odbccp32.lib"

}

+link("WinCE")
{
/SUBSYSTEM:WINDOWSCE,4.20
/MACHINE:ARM
/ARMPADCODE
/MANIFEST:NO
/NODEFAULTLIB:"oldnames.lib"
/STACK:65536,4096
"coredll.lib"
"corelibc.lib"
"ole32.lib"
"oleaut32.lib"
"uuid.lib"
"commctrl.lib"

}

Note the following:

• Libraries must be specified in double quotes

• The linker should be regarded as running from the location
of the generated.vcproj file - i.e. the build directory.

• Per configuration linker switches can easily be specified (in
the same fashion as for compiler switches)

• Obviously there is no concept of per file linker switches.

3.12 Sub-projects

A subprojectis a project on which the current project depends
(i.e. there is a linking dependency). When a project specifiesa
subproject, the logical path to the project directory is given for
the subproject. For example:

subproj
{
"Ceda/Core/cxUtils"
"Ceda/Core/cxObject"

}

Note the following:

• Sub-projects are specified in an additive fashion. i.e. each
subproj{ ... } directive adds to the overall set of sub-
projects.

• Per configuration sub-projects are not supported

7

• Each sub-project must be specified using a logical path to
the project directory in double quotes. Forward slashes must
be used.

3.13 Input files

A tree structure specifies all the files in the project. File and di-
rectory names must be enclosed in double quotes. A string repre-
sents a directory name if and only if it is followed by a left brace.
It is conventional (but not required) to list directories before files.

{
"dir1"
{

"dir2"
{
"file1.cpp"
"file1.h"
"file2.cpp"
"file2.h"

}
"dir3"
{
"dir4"
{

"file4.cpp"
"file4.h"

}
"file3.cpp"
"file3.h"

}
}
"file5.cpp"
"file5.h"

}

In this case the directory structure on disk is reflected in the
folder structure presented in MSVC, using folder icons for direc-
toriesdir1, dir2, dir3 anddir4. We will see below that it is
possible to break this direct correspondence, if it’s appropriate.

The outermost curly braces is always assumed to enclose the
content of the project directory (see section 3.2).

3.13.1 Wild cards

The Xcpp build system supports wild cards when specifying
files/directories to add to a project. Consider the following spec-
ification of the files in a project:

{
"src"
{

"ArchiveTests.cpp"
"CacheMapTests.cpp"
"CRCTests.cpp"
"FileTests.cpp"
"GuidTests.cpp"
"HeapAllocTests.cpp"
"HexTests.cpp"
"IndentingStringStreamTests.cpp"
"Lessons.cpp"
"MD5Tests.cpp"
"MultiSubStringTests.cpp"
"PagedBufferTests.cpp"
"ParserDemo.cpp"
"PseudoRandomTests.cpp"
"SessionValueCacheTests.cpp"
"ThreadTests.cpp"
"RefCounter.cpp"
"VariableLengthSerialiseTests.cpp"
"VectorTests.cpp"
"VectorTests.h"
"xstringTests.cpp"
"xostreamTests.cpp"
"txUtils.cpp"
"StdAfx.cpp" : +cpp { /Yc"StdAfx.h" }
"StdAfx.h"

}

}

An alternative is for the files in the project to be determined
automatically from the file system:

{
"src"
{

"StdAfx.cpp" : +cpp { /Yc"StdAfx.h" }
"*.cpp"
"*.h"

}
}

Wild card searching is performed against the virtual tree, and
therefore may involve searching through multiple physicaltrees
on a development machine.

Note thatStdAfx.cpp isn’t added twice. In general, wild
card searches never add a folder or file with the same logical path
more than once.

3.13.2 Name Patterns

We refer to a string such as"*.cpp" as aname pattern. A name
pattern cannot contain any slash characters. Most generally name
patterns can be used to filter either file names or directory names.

For the file named"foo.bar", the following name patterns all
successfully match the file name:

*
f*
.
.b
foo.bar*
f*.bar
f*.*r
f??.bar
???.???
f*.b?r

*?oo.bar

whereas the following name patterns fail:

*?foo.bar
f?.bar
g*
*.exe

3.13.3 Name filters

A name filteris either a prescriptive or proscriptive set of name
patterns,

A name pattern is represented using a double quoted string. A
name filter consists optionally of a ’+’ or ’-’, then either a single
pattern or else a list of zero or more white space delimited pat-
terns in square brackets. An initial ’-’ means the specification is
proscriptive (rather than prescriptive, which is the default). With
the ’-’ a name is rejected if it matches any of the patterns, whereas
with ’+’ a name is accepted if it matches any of the patterns.

The name filter-[] means reject nothing, or in other words
accept anything, and is equivalent to"*".

Note that the following four lines are all equivalent name fil-
ters:

"*.cpp"
["*.cpp"]
+"*.cpp"
+["*.cpp"]

8

3.13.4 Recursive search

There is support for recursion through directories by appending
an asterisk after the file name filter. E.g.

{
"dir1"
{

"dir2"
{
["*.cpp" "*.h"] *

}
}

}

In this case all.cpp and.h files underdir2 or any of its
subdirectories recursively are added to the project. This could
cause many folders to be shown underdir2 in MSVC. Note
that only non-empty directories are added to the.vcproj file
and therefore appear in MSVC.

3.13.5 Flat recursive search

Recursion through directories can have the structure flattened as
it appears in MSVC. This is easily achieved by prefixing the as-
terisk with the keywordflat as follows:

{
"dir1"
{

"dir2"
{
["*.cpp" "*.h"] flat *

}
}

}

Now all the.cpp and.h files are displayed in MSVC in a
single flat list underdir2.

3.13.6 Rename a folder in MSVC

It is possible to rename a folder as it appears in MSVC. For ex-
ample:

{
"dir1"
{

"dir2" as "x"
{
["*.cpp" "*.h"] flat *

}
}

}

Now directory dir2 will appear as a folder namedx in
MSVC.

3.13.7 Using empty strings

as doesn’t just allow for renaming. It can also allow a folder to
be added to MSVC where there is no corresponding directory in
the virtual tree, and vice versa. This is achieved by using empty
strings on either side ofas. E.g.

{
"" as "Header"
{

"*.h" flat *
}
"" as "Source"
{

"*.cpp" flat *
}

}

In this case there are folders in MSVC namedHeader and
Source but no corresponding directories in the virtual tree.

Conversely, in the following exampledir2 has been aliased
to an empty string. A flattening affect is achieved, in that all the
.h files appear directly underdir1 instead ofdir2.

{
"dir1"
{

"dir2" as ""
{

"*.h"
}

}
}

Use the following mnemonic to help understand this:

"virtual-tree-directory-name" as
"MSVC-folder-name"

3.13.8 Directory names containing “..”

It is permissible for directory names to contain’..’ in the man-
ner illustrated below to step upwards out of the project directory.
For example:

$TARGET_TYPE = "Utility Project"
$ROOT_TO_PROJDIR = "x/y/z"
{
"../../.." {"*.xcws"*} // $
"../.." {} // x
".." {} // y
"" {} // z

}

"../../.." is a right inverse of$ROOT_TO_PROJDIR and there-
fore represents the root of the virtual tree. It is displayedas a
folder named$ within MSVC. The pattern"*.xcws" is applied
recursively to the virtual tree under$, so we end up with every
Xcpp workspace file in the entire virtual tree.

Using"../.." denotes the directory namedx, and would be
displayed as a folder namedx in MSVC.

There is a predefined variable named$PROJDIR_TO_ROOT
which is calculated as a right inverse of$ROOT_TO_PROJDIR.
Therefore another way to show all the workspaces in the virtual
tree is:

$TARGET_TYPE = "Utility Project"
$ROOT_TO_PROJDIR = "x/y/z"
{
"$(PROJDIR_TO_ROOT)" as "Workspaces"
{

"*.xcws" flat *
}

}

In this case the folder appearing in MSVC has been renamed
Workspaces, and the.xcws files in the folder are displayed
in a flat list.

3.13.9 Example using macro preprocessor

Here is a more complex example using the xcpp macro pre-
processor:

$TARGET_TYPE = "Utility Project"
$ROOT_TO_PROJDIR = "Ceda/CedaExtras"
@import "Ceda/BaseDefaults.xcpjh"
directories -".svn"
@def mProjFiles = ["*.xcpj" "*.xcws" "*.xcpjh"]

flat *
@def mProjectFilesInDirs(L) = @for(dir in L) dir

{ mProjFiles }
@def ROOT = "$(PROJDIR_TO_ROOT)"
{

9

ROOT as "Workspaces"
{

+"*.xcws" flat*
}
ROOT
{

"Ceda"
{
mProjectFilesInDirs(["App", "App1",

"Build", "CedaExtras", "Core",
"Core1"])

"_BUILD"
{

-["*.exe" "*.dll"] *
}

}
mProjFiles

}
}

Note that since all the.xcws files under$ are placed under
Workspaces, they cannot appear anywhere else. In general a file
will only show up at most once in a given project - i.e. where it
first appears in a top to bottom reading of the.xcpj file.

3.13.10 Directories filter

While processing the.xcpj file from top to bottom, there is a
global variable that records aDirectories Name Filter(DNF) to
be used when recursing into nested directories. Recursion only
proceeds into those directories having a name that complieswith
the currently set DNF.

The DNF is assigned using the keyworddirectories fol-
lowed by a name filter following the syntax defined in section
3.13.3.

In the following example the recurse underdir3 will not pro-
ceed into any directory namedbin, whereas the recurse under
dir4 will only proceed into directories that begin with ’s’ or ’d’.

{
"dir1"
{

"dir2"
{
directories -"bin"
"dir3" {-[]*}

directories +["s*" "d*"]
"dir4" {-[]*}

}
}

}

Initially the DNF allows for all directories, which is equalavent
to -[] (which is also equivalent to+[*] or just[*] since the+ is
optional).

When the source code is checked out from a SubVersion repos-
itory each directory in the working set contains internal files
stored under a subdirectory named.svn. It could be thought that
the following should be used to avoid pulling these hidden files
and directories into the project:

directories -".svn"

However this is not actually required because the Xcpp build
system automatically ignores directories with the ’hidden’ at-
tribute set.

3.13.11 Absolute paths

It is possible to use absolute paths (i.e. paths that begin with a
slash, or begin withx:/ wherex denotes a drive letter). E.g.

$MSVC = "C:/Program Files/Microsoft Visual
Studio 8"

{
"$(MSVC)/VC/include" as "msvc"
{

"*.h" *
}

}

3.13.12 Applying per file per config compiler switches

Following a file or file filter (even a recursive one), a colon then
a comma separated list of items can be specified. For C++ files
each item is one of the following:

• +cpp{...} – to add additional compile switches to the files
for every configuration

• -cpp{...} – to remove compile switches for the files for
every configuration

• +cpp(configs){...} – to add additional compile switches
to the files for the given configurations

• -cpp(configs){...} – to remove compile switches for the
files for the given configurations

• exclude – to exclude the files from the build for every con-
figuration

"MyGroup"
{

"*.cpp" flat * : +cpp{/D "BLAH"}
"g*.cpp" * : -cpp("Release"){/D "BLAH"},

+cpp{/O1}
"f*.cpp" : exclude

}

Note that since file filters can overlap (in the set of files that
they reference), for a given file and config the effect is roughly to
take a union of various settings. More precisely for a given file
and config there is a sequence of+cpp{...} and-cpp{...} that
are applied in order in a top to bottom reading of the.xcpj file
to end up with a particular result.

For resource files,+rc{...} or -rc{...} items are applicable
instead.

4 Xcpp Workspace Files

An Xcpp Workspace Filetypically uses the extensionxcws. It
defines a set of projects to be built (i.e. added to an MSVC solu-
tion). A workspace file is stored in the logical tree and therefore
is assumed to be uniquely identified by a logical path. There are
no additional constraints on the possible location of a workspace
file.

Some projects are added to a workspace indirectly. For ex-
ample, when adding a project, all its subprojects are implicitly
added as well. These subprojects may in turn have subprojects
and so on that are also added implicitly. Note that a project is
only added to a MSVC solution once even though it may be a
subproject of many projects.

One “parent” workspace can reference another “child”
workspace. The parent inherits all the projects defined by the
child. This referencing between workspace files can form arbi-
trary DAG structures (i.e. cycles are not permitted). The inheri-
tance of projects is transitive.

The file format of anxcws consists of a name (which will be
used for the generated MSVC solution file), followed by a list
of double quoted strings enclosed in curly braces. Each string
is a logical path using only forward slashes, either to a project
directory or else to a child.xcws file. E.g.

10

"Object"
{

"Ceda/Core/Utils.xcws"
"Ceda/Core/cxObject"
"Ceda/Core/Object/exObject"
"Ceda/Core/Object/txObject"

}

4.1 Additional dependencies

Projects can be nested in the.xcws file to create additional de-
pendencies between projects when the MSVC.sln file is gen-
erated.

A workspace can reference another workspace in order to
include all the projects and dependencies specified by that
workspace. This results in the union of all the project depen-
dencies.

5 xcpp.exe

xcpp.exe is a console application able to generate the MSVC
solution and project files in the manner described in this article.
The settings are provided in axcpp configuration file. By con-
vention this file has extensionxcpp. The format of this configu-
ration file is described below in section 5.1.

On the command line,xcpp.exe takes the path to the con-
figuration file. Any extra command arguments act as though they
are appended to the end of the configuration file. This allows
some of the configuration settings to be specified on the com-
mand line if that is convenient.

5.1 Xcpp configuration file

The.xcpp file format mostly consists of settings that take the
form name = value. Names can be reassigned. In particular
this includes the definition of variables, following the same syn-
tax as in.xcpj files (see section 3.4). In fact these variables
are made available during the subsequent processing of eachof
the.xcpj files. This provides an ideal mechanism to pass in-
formation through to every project. It is particularly useful for
passing through include and library paths to third party libraries
(like boost).
xcpp.exe actually allows for building all the targets by run-

ning the C++ compiler, resource compiler and the linker itself.
To allow this it must be provided with PATH, LIB and INCLUDE
variables. The values of these variables must be white spacede-
limited strings enclosed in curly braces.

The compiler can be set tovc6, vc8 or vc9. This affects the
generation of the.vcproj and.sln files for MSVC.

The variablevirtualTree is assigned with an ordered list of
paths to the roots of the physical trees. These paths can be abso-
lute or else relative to the build directory.

The variable$EXPORT must be assigned with the path to the
export directory. This path can be absolute or else relativeto the
build directory.

There are a number of boolean flags that can also be set. These
are detailed in the example of a.xcpp file given below:

$MSVS = "c:/Program Files/Microsoft Visual
Studio 8"

// VC8 professional
PATH =
{

"$(MSVS)/VC/bin"
"$(MSVS)/Common7/IDE"
"$(MSVS)/VC/PlatformSDK/bin"

"c:/windows"
"c:/windows/system32"

}
INCLUDE =
{
"$(MSVS)/VC/include"
"$(MSVS)/VC/PlatformSDK/include"
"$(MSVS)/VC/atlmfc/include"

}
LIB =
{
"$(MSVS)/VC/lib"
"$(MSVS)/VC/PlatformSDK/lib"
"$(MSVS)/VC/atlmfc/lib"

}
compiler = vc8

virtualTree =
{
"c:/dev/head"
"c:/dev/utils/v2"
"c:/dev/cad/v1"

}

$EXPORT = "../export"

// Enables writing of more verbose information
// to stdout
diagnostics = false

// Indicates whether to copy public header files
// from the input virtual tree to the output
// directory $EXPORT
exportPublicHeaders = true

// Indicates whether to copy dll and exe files
// from the input virtual tree to the output
// directory $EXPORT.
repackageExecutableTargets = true

// Indicates whether pre-packaged projects in
// the input virtual tree are to appear in the
// MSVC solution.
solutionContainsPrepackagedProjects = true

// Indicates whether public header files copied
// from the input virtual tree to the output
// directory $EXPORT will be made read only.
makeExportedHeaderFilesReadOnly = true

// Generate MSVC .vcproj and .sln files
mode = gen

In general,.xcpp config files support reassignments of vari-
ables. Only the last assigned value of a variable takes effect. This
combined with the support for#include directives makes it pos-
sible to inherit default values and override a small subset of the
settings.

5.1.1 Settings relevant to translation

The following settings are relevant to thetranslationmode avail-
able toxcpp.exe. Translation is outside the scope of this arti-
cle.

// If true causes xcpp to write the files under
// ./source without compiling and linking them
// using the VC compiler and linker.
translateOnly = false

// Forces xcpp to rewrite all files under
// ./source
rebuildAll = false

// Indicates whether to rewrite files under
// ./source that are token equivalent
writeTokenEquivalent = false

// Indicates whether xcpp translated files

11

// written under ./source are made read only.
makeTranslatedFilesReadOnly = true

A .xcpj grammar

We use [2] to define the EBNF syntax. LetstringLiteral stand
for a double quoted string literal andintLiteral for an integer
literal.

The grammar is presented in bottom up order (i.e. there is a
tendency to define non-terminals before they are referenced)

A.1 Configurations

targetType =
’"Application"’ |
’"Static Library"’ |
’"Console Application"’ |
’"Dynamic-Link Library"’ |
’"Utility Project"’;

compilerName =
’"vc6"’ | ’"vc8"’ | ’"vc9"’;

(* E.g. "Debug" *)
configName = stringLiteral;

(* E.g. "Win32" *)
platformName = stringLiteral;

(* E.g. "Debug|Win32" *)
configAndPlatform = stringLiteral;

(* E.g. "WinCE" *)
tagName = stringLiteral;

(* E.g. "Debug|Win32" ["Unicode"] *)
singleConfigDef =

configAndPlatform,
[

’[’, {tagName}, ’]’
];

configsDef =
’config’,
’{’,

{ singleConfigDef },
’}’;

(* E.g. "Debug|WinCE|vc8"
Each string between the | must be either a
tagName, configName, platformName,
compilerName or targetType

*)
configRef = stringLiteral;

(* E.g. ("Debug|WinCE|vc8", "Win32") *)
configRefList =

’(’,
[configRef, { ’,’, configRef }],
’)’;

Grammar for configurations

A.2 C++ Compiler switches

cppBoolSwitch1 =
’/GR’ | ’/GL’ | ’/GS’ | ’/Gy’ | ’/fp:except’;

cppBoolSwitch2 =
’/nologo’ | ’/Oi’ | ’/Op’ | ’/Oy’ | ’/GT’ |
’/X’ | ’/C’ | ’/GF’ | ’/Gm’ | ’/RTCc’ |
’/Za’ | ’/J’ | ’/openmp’ | ’/Fx’ | ’/doc’ |
’/WX’ | ’/Wp64’ | ’/showIncludes’ | ’/u’ |
’/FC’ | ’/Zl’ | ’/Zc:wchar_t’ |
’/Zc:forScope’ | ’/QRinterwork’ | ’/QRfpe’;

cppEnumSwitch =
’/Od’ | ’/O1’ | ’/O2’ | ’/Ox’ |
’/Ob1’ | ’/Ob2’ |
’/Ot’ | ’/Os’ |
’/EHsc’ | ’/EHa’ | ’/GX’ |
’/RTCs’ | ’/RTCu’ | ’/RTC1’ | ’/RTCsu’ |

’/GZ’ |
’/MT’ | ’/MTd’ | ’/MD’ | ’/MDd’ |
’/Zp1’ | ’/Zp2’ | ’/Zp4’ | ’/Zp8’ | ’/Zp16’ |
’/QRarch4’ | ’/QRarch5’ | ’/QRarch4t’ |

’/QRarch5t’ |
’/TC’ | ’/TP’ |
’/arch:SSE’ | ’/arch:SSE2’ |
’/fp:precise’ | ’/fp:strict’ | ’/fp:fast’ |
’/FA’ | ’/FAcs’ | ’/FAc’ | ’/FAs’ |
’/FR’ | ’/Fr’ |
’/W0’ | ’/W1’ | ’/W2’ | ’/W3’ | ’/W4’ |
’/Z7’ | ’/Zi’ | ’/ZI’ |
’/Gd’ | ’/Gr’ | ’/Gz’ |
’/errorReport:prompt’ |

’/errorReport:queue’ |
’/clr’ | ’/clr:pure’ | ’/clr:safe’ |

’/clr:noAssembly’ | ’/clr:oldSyntax’;

cppStrArgSwitch =
’/Fd’ | ’/Fe’ | ’/Fo’ | ’/Fp’ | ’/FR’;

cppListStrArgSwitch =
’/I’ | ’/D’ | ’/FI’ | ’/FU’ | ’/U’;

cppPchSwitch =
’/Yc’ | ’/Yu’ | ’/YX’;

cppCompilerSwitch =
cppBoolSwitch1, [’-’] |
cppBoolSwitch2 |
cppEnumSwitch |
cppStrArgSwitch, stringLiteral |
cppListStrArgSwitch, stringLiteral |
cppPchSwitch [stringLiteral];

Grammar for C++ compiler switches

A.3 Resource Compiler switches

rcBoolSwitch =
’/x’ | ’/v’;

rcStrArgSwitch =
’/fo’;

rcListStrArgSwitch =
’/I’ | ’/d’ | ’/u’;

rcCompilerSwitch =
rcBoolSwitch |
rcStrArgSwitch, stringLiteral |
rcListStrArgSwitch, stringLiteral;

Grammar for Resource compiler switches

A.4 Linker switches

linkBoolSwitch =
’/NOLOGO’ | ’/NOENTRY’ | ’/IGNOREIDL’ |
’/NOASSEMBLY’ | ’/DELAY:UNLOAD’ | ’/RELEASE’ |
’/DEBUG’ | ’/SWAPRUN:CD’ | ’/SWAPRUN:NET’ |
’/PROFILE’ | ’/MAPINFO:EXPORTS’ | ’/MAP’ |
’/NODEFAULTLIB’ | ’/DELAYSIGN’ |
’/CLRUNMANAGEDCODECHECK’;

machine =
’X86’ | ’IX86’ | ’I386’ | ’AM33’ |
’ARM’ | ’EBC’ | ’IA64’ | ’M32R’ |
’MIPS’ | ’MIPS16’ | ’MIPSFPU’ |
’MIPSFPU16’ | ’MIPSR41XX’ | ’SH3’ |
’SH3DSP’ | ’SH4’ | ’SH5’ | ’THUMB’ |

12

’X64’;

subsystem =
’CONSOLE’ | ’WINDOWS’ |
’NATIVE’ | ’EFI_APPLICATION’ |
’EFI_BOOT_SERVICE_DRIVER’ |
’EFI_ROM’ | ’EFI_RUNTIME_DRIVER’ |
’POSIX’ | ’WINDOWSCE’;

opt =
’NOREF’ | ’REF’ | ’NOICF’ | ’ICF’ |
’NOWIN98’ | ’WIN98’;

linkEnumSwitch =
’/MACHINE:’, machine |
’/SUBSYSTEM:’, subsystem |
’/OPT:’, opt |
’/DRIVER’, [’:UPONLY’ | ’:WDM’] |
’/ASSEMBLYDEBUG’, [’:DISABLE’] |
’/INCREMENTAL’, [’:NO’] |
’/MANIFEST’, [’:NO’] |
’/FIXED’, [’:NO’] |
’/TSAWARE’, [’:NO’] |
’/LARGEADDRESSAWARE’, [’:NO’] |
’/LTCG’, [’:PGINSTRUMENT’ | ’:PGOPTIMIZE’ |

’:PGUPDATE’] |
’/VERBOSE’, [’:LIB’] |
’/ALLOWISOLATION:NO’ |
’/CLRTHREADATTRIBUTE:’, (’MTA’ | ’STA’) |
’/CLRIMAGETYPE:’, (’IJW’ | ’PURE’ | ’SAFE’) |
’/ERRORREPORT:’, (’NONE’ | ’PROMPT’ | ’QUEUE’);

linkStrArgSwitch =
’/DEF’ | ’/BASE’ | ’/ENTRY’ | ’/IDLOUT’ |
’/TLBOUT’ | ’/TLBID’ | ’/PGD’ | ’/ORDER’ |
’/MANIFESTFILE’ | ’/OUT’ | ’/VERSION’ |
’/IMPLIB’ | ’/PDB’ | ’/PDBSTRIPPED’ |
’/MIDL’ | ’/KEYFILE’ | ’/KEYCONTAINER’ |
’/MAP’;

linkListStrArgSwitch =
’/MANIFESTDEPENDENCY’ |
’/ASSEMBLYMODULE’ | ’/ASSEMBLYRESOURCE’ |
’/ASSEMBLYLINKRESOURCE’ |
’/INCLUDE’ | ’/DELAYLOAD’ |
’/NODEFAULTLIB’ | ’/LIBPATH’;

reserve = intLiteral;
commit = intLiteral;
libraryName = stringLiteral;

linkSwitch =
linkBoolSwitch |
linkEnumSwitch |
linkStrArgSwitch, ’:’, stringLiteral |
linkListStrArgSwitch, ’:’, stringLiteral |
(’/HEAP:’ | ’/STACK’), reserve, [’,’, commit] |
libraryName;

Grammar for linker switches

A.5 Applying compiler and linker switches

This part of the grammar concerns the incremental addition or re-
moval of compiler or linker switches, either to all configurations
or else to specified configurations.

cppSpec =
(’+’ | ’-’),
’cpp’,
[configRefList],
’{’,

{ cppCompilerSwitch },
’}’;

rcSpec =
(’+’ | ’-’),
’rc’,
[configRefList],
’{’,

{ rcCompilerSwitch },

’}’;

linkSpec =
(’+’ | ’-’),
’link’,
[configRefList],
’{’,

{ linkSwitch },
’}’;

Grammar for applying switches to configs

A.6 Project files

This is the relevant part of the grammar involved with specifying
the files that comprise the project. It supports nested directories,
wild cards, recursion, flattening, renaming.

pattern = stringLiteral;

directoryName = stringLiteral;
folderName = stringLiteral;

(* E.g. +["*.cpp" "*.h"] *)
nameFilter =
[’-’ | ’+’],
pattern | ’[’, {pattern}, ’]’;

(* E.g. directories -[] *)
directoriesFilterDef =
’directories’, nameFilter;

(* E.g. +cpp{/O1} *)
fileOpt =
’exclude’ |
cppSpec |
rcSpec;

(* E.g. "*.cpp" flat * : +cpp{/D "BLAH"} *)
filesSpec =
nameFilter,
[[’flat’], ’*’],
[’:’, fileOpt, {’,’, fileOpt}];

dirElement =
filesSpec |
directoryName, [’as’, folderName],

directoryStructure;

directoryStructure =
’{’, {dirElement}, ’}’;

Grammar for project files

A.7 Entire file

varName = identifier;
varValue = stringLiteral;

path = stringLiteral;
logicalPathToProjDir = path;

subProjSpec =
’subproj’,
’{’,
{ logicalPathToProjDir },
’}’;

toolFilesSpec =
’toolFiles’,
’{’,
{ path },
’}’;

description = stringLiteral;
command = stringLiteral;

eventSpec =

13

(’prebuildevent’ | ’prelinkevent’ |
’postbuildevent’),

[configRefList],
’{’,
description,
command,
’}’;

genKey =
’OutputDirectory’ |
’IntermediateDirectory’ |
’DeleteExtensionsOnClean’ |
’BuildLogFile’ |
’InheritedPropertySheets’ |
’ConfigurationType’ |
’UseOfMFC’ |
’UseOfATL’ |
’ATLMinimizesCRunTimeLibraryUsage’ |
’CharacterSet’ |
’ManagedExtensions’ |
’WholeProgramOptimization’;

genSettingsSpec =
’general’,
[configRefList],
’{’,
{ genKey, ’=’, stringLiteral },
’}’;

xcpjElement =
’xcpp’ |
’export’ |
’$’, varName, ’=’, varValue |
’@import’, path |
cppSpec |
rcSpec
LinkSpec
subProjSpec |
configsDef |
directoriesFilterDef |
toolFilesSpec |
eventSpec;

xcpjFile =
’$TARGET_TYPE’, ’=’, targetType,
’$ROOT_TO_PROJDIR’, ’=’, logicalPathToProjDir,
{ xcpjElement },
directoryStructure;

Grammar for .xcpj file

References

[1] Xcpp Macro Preprocessor, D. Barrett-Lennard, Jan 2010,
http://www.cedanet.com.au/ceda/Xcpp%20Macro%

20Preprocessor.pdf.

[2] ISO/IEC 14977:1996(E).Information technology - Syn-
tactic metalanguage - Extended BNF, First edition
1996-12-15. http://standards.iso.org/ittf/

PubliclyAvailableStandards/s026153_ISO_IEC_

14977_1996(E).zip.

14

