Xcpp Build System

David Barrett-Lennard
Cedanet Pty Ltd
Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract 2 Guiding principles

This article describes the Xcpp Build System which allowsstie 2.1 Exporting targets
opers to conveniently and flexibly define Microsoft Visual4C+Typically when a DLL is formally packaged and released only
projects and solutions using simple text files written in atom the following files areexported

language.
e The public header files

e Documentation of the API, perhaps with demonstration pro-
grams.

1 Overview e The. | i b file, which is needed when static linking to the

library

The Xcpp Build Systenprovides a convenient and flexible ,
means to create and edit C++ projects and solutions thagttarg ® The. dl 'l file.
the Microsoft Visual C++ Integrated Development Enviromne A potential disadvantage to a client is that they cannotiyeasi
(MSVC). debug into the DLL without the original source code. Further

In earlier versions of MSVC, projects are recorded in tegsfilmore the client has in effect only been granted read accehs to
with adsp extension, and workspaces in text files wittisavex- DLL, because without the source code they cannot make change
tension. Later versions of MSVC (from Visual C++ 7.0, reledis to the source code and rebuild the DLL. Nevertheless, a filyma
in 2002) use XML files (with extensioncpr oj for project files released DLL is very common and has a number of advantages:
ands| n for solution files). A solution is essentially a workspace.

Developers don’'t normally edit thesevcproj and. sl n
XML files directly. Doing so would be inconvenient — because
the format is verbose and repetitive. For example, thereis n e Hiding of intellectual property
means to apply compiler switches to all configurations aeonc

e Space efficiency - no need to provide all the source code,
supporting unit tests, design documentation etc.

e Clients don't need to compile the DLL
Instead MSVC provides wizards to create new projects and so-])
lutions, and sophisticated GUIs to edit the settings. Orfertun e Helps to define formal releases that have passed quality con-

nate result of this is that most developers don’t tend toofaotit trol (i.e. release engineering)

the build settings across projects even though MSVC support Developers have very clear boundaries, and more impor-
concept of inheritance of project settings. It seems thamnad tantly well defined areas of responsibility. When develop-
practice tends to be dictated by the wizards, and the wiziod$ ment of a library is shared across hundreds of developers

promote sharing of settings amongst projects. there is a tendency for no-one to take responsibility fot-qua

The Xcpp build system allows developers to create textyml re ity.

resentations of projects and workspaces, in files with sibeis This choice i ticularly rel t | ¢ of d
xcpj andxcws respectively. These textual representations are IS choice 1S particufarly relevant 1o very farge teams

written in a custom designed language that is simple, eteg I‘?k[))p?l:sg Shﬁ)gld tklley use solur:ionlz thatkallo_w all s(;)urclchsa?
flexible and very concise. It promotes sharing of build sgti € burlt by all aevelopers, or should packaging and releasin

with the result that a given project typically only needspedfy DLLs be. fortrrr]1all|s§d mternallthnhlrt\ ghe tealm ’ g(t)r veryelgrg
the files in that project (because all the compiler switchieker companies the fatter approach must be émpioyed to someedegre

switches and configurations are inherited usingaarport di- because having every developer build all the source code isn
rective). scalable.

MSVC. vcproj and. sl nfiles are influenced by this choice

~ Itis claimed that the textual representation ends up beasg &,ecayse there is a distinction between explicit linking given
ier and simpler than the MSVC approach based on GUI editing; y, fijle versus declaring a dependency between projects.

of settings. This advantage is greatest when there aretleages gy contrast the Xcpp build system makes this choice orthogo-

and complex configuration requirements. nal to the representation of theccpj and. xcws files. There-
The Xcpp Build Systencalculates. vepr o) and. sl n files fore the same files can be used to either build a large solution

fromthe. xcpj and. xcws files. Therefore developers can edigontaining all the source code, or else a smaller solutioareh

build and debug projects/solutions in MSVC in the normal wapme of the projects don't appear, instead using expliukirig

with no limitations whatsoever. to the releasedl i b files.

2.2 Aqgloballogical tree and in a working set we can always check out, commit changes,
update, and tag the whole physical tree in a single, conaenie

It is common practice for build systems or source code reposi 4 atomic operation

tories to use a directory named something like “ThirdPafty”

where to place external projects. For example, company X may .

consider that any DLL created by company Y should be placdet Virtual Tree

under “ThirdParty”. \We reject this notion, because it leBHSI- |, s section we define a concept of taking the union oban
consistency in the logical placement of files, and thereéom- - o0 qsequence of physical trees. We call thigidual tree be-
plexity in the way include and library paths are defined. Moge, \qe the build system doesn't materialise it. The concept o
importantly it hurts the ability to share and reuse projewd a, \;irt i) tree provides the basis for combining togethersmu
workspace files. code from different sources in a well defined manner, without

We follow the principle that a single logical directory stfu yho neeq for specialised support from the file system (such as
ture holds all source code to be written. This logical stitets symbolic links to mount directories).

defined without regard for the requirements of a partic@ed} For examplef $1, $2, $3] denotes a virtual tree which contains
oper (or even a company). For example, the structure is 8WeRy,e njon of all the directories and files fram, $2 andss. In the

dent of: case where there are multiple candidate files with the sagie lo
ical path, the winner is the file in the physical tree that @ppe

e what projects are physically stored on a given machine; first in the ordered sequence of physical trees. Note thaé the

« what projects are being built and packaged:; and are some obvious similarities with the ordered sequeneeldi
tional include pathsised by C/C++ compilers. E.g. $b ands$3
e who is packaging the projects and why. (but nots$1) store afile with the logical pattat Scanner/ | mage. h

then only the file undes2 is the one that is said to exist in the
In this article we uses to refer to the one and only root ofvirtual tree, because files #2 always take precedence over cor-
this logical tree. Alogical pathrefers to a path in the logical treeresponding files fronss.
relative tos. In order to avoid name clashes a company may wantThis approach is elegant because a virtual tree is repezsent
to locate their projects under a directory based on the campgery simply as an ordered list of paths, without the need to

name. specify locations for where to logically mount one physitak
within another. There is a tiny overhead in that source codstm
2.3 Physical trees physically appear in context under appropriate contaidingc-

tories (because the full logical path must be physicallyised).
The logical tree is only an abstraction in the sense thatdben However it is argued that making that context physicallyliexp
passes all projects written at all times by all developeopifig helps to document the intention more easily than adhocralter
that name clashes won't occur). Therefore it is only evespostives.
ble to physically store some subset of the logical tree orah re An MSVC solution is calculated by providing both the follow-
computer. We call this @hysical tree The root of a physical ing:
tree must always correspond to the reatf the logical tree. It
is convenient to identify a physical tree by the physicahtoan 1. Avirtual tree (specified with an ordered list of paths)lan
of its root. Lets$1, $2, etc to refer to local paths on a real com-
puter that identify physical locations of the root nodestofgical
trees. E.g. a developer may store three distinct physieaston
their computer:

2. The logical path to a Xcpp workspacexcws) file.

The given virtual tree designates thgout to the build pro-
cess for the solution. All Xcpp workspace and projectgws,

$1 = c:/dev/head . xcpj) files exist in this virtual tree and therefore can be
$2 = c:/dev/experinent uniquely identified by a logical path. Workspace files always
8 = CRUEEIIOE CERECEN (b reference project files (and nested workspace files) usigig lo

cal paths. Project files always reference subprojects Usgical

For a file with absolute path: / dev/ head/ x/ y/ z, we regard ; . I
this path as the concatenation of an absolute path to a phﬁ?it-hs' Physically however it means for example that a w P

cal tree (i.e.51 = c: / dev/ head) and a logical path (i.ex/y/ z e on drive d: could end up referencing a project on drive e:
which is the path relative to the root of the physical tredjefe-
fore we say that/ y/ z is the file’s logical path. 2.5 Dealing with versioning of DLLs

Itis allowed (but not required) that each of these physiesig
be working sets associated with particular branches orethg
versions stored within particular source code reposisoriés
such itis typically possible to independently commit/uigdfaom
these distinct physical trees. $1

Note that source code repository systems do not normally a 25
low for “mounting” parts of physical trees of one repositamyo $4
the physical tree associated with another repository (sibe
when it involves a different vendor). In general it's appiafe These are physical paths to physical trees and therefore the
to assume that working sets checked out of source code teposionvention for organising these directories on the has#{-dr
ries represent distinct trees of directories and files onvaeldper in a given repository is outside the scope of this articlem&o
machine. users for example may simply use a large flat list under aaingl

Generally it is expected that a source code repositorystome directory. Other users will want to organise the physiag$rin a
entire physical tree (i.e. that includg} rather than only somestructure using directories. It is of course permissibiel(a fact
sub-tree strictly belovs. One reason for doing so is a practicakcommended) for this structure to be recorded in a sourde co
one: If we always store a physical tree rooted at a repository repository, i.e. so development teams share the samelsgjct

Consider that we want to store four distinct exported versiof
the cadstar project on our computer. No problem! We simply
use four distinct physical trees. E.g.

c:/dev/CadStar/ V1.0
c:/dev/ CadStar/ V1. 1
c:/dev/ CadStar/ V1.2
e:/dev/ CadStar/ V2.0

2

A virtual tree references a given physical tree using a lothe export directory to hold the output files of the build thet
physical path. It follows that any number of distinct virttiees packaged in a formal release.
can reference the same physical tree. In other words thealirt The build directory contains intermediate build files sush a
tree idea promotes sharing. For example, V1.2 of CadStgr onbbj and. pch files. To avoid name clasheobj files are
needs to be stored once on a given development machine, andsganised under directories according to project naméfopia
it can be used by many different build environments. and configuration. It is assumed that filenames are uniquerwit
Often a given physical tree holds some exported projecsyiven project but not across projects.
The nice feature is that the full directory structures ameags Since the. vcproj and. sl n files are calculated they are
recorded relative t&, which eliminates the need for the dealso treated as intermediate files to be stored in the buittdi
veloper to manually specify where physical trees need to toey.
“mounted”. This largely automates the process of bringing a
wide range and disparate ;et of third party software libgato- 2.8 Chained builds
gether to form a build environment. All the user needs to do'is
specify a virtual tree - i.e. an ordered sequence of locddgtt A vital concept is that the output of one build process cameser
physical trees. as part of the input to another. The export directory is oiggh
Xcpp project and workspace files are written in a way thatas a physical tree that can be used to help define anothealvirtu
completely independent of versioning concerns. i.e. wensee tree, such that the exported libraries are available astsniou
anything like a version number in either type of file. Thisgstio another MSVC solution. It follows that paths down from the
ensure that different developers can build the same priojeii- export directory can be regarded as logical paths.
ferent ways, and not be “fighting” with each other when editin When a. xcws file is used to generate MSVCr/cpr oj and
. Xcpj or.xcws files. . sl n files, the result depends on whether original or exported
A Xcpp workspace can define what projects to package, betsions of projects are found within the input virtual tr&ée
doesn't try to stipulate what versions of what projects tokpa virtual tree is not defined by thexcws file, so the samexcws
age. Version information is instead managed by the develofile can generate quite different development environmergsit
when specifying the virtual tree to be used for a given build ethe needs of the individual developer.
vironment. When a project is exported,.accpj file is written to the ex-
port directory with the same logical path as the originatpj
. S file. This file resembles the original except it only lists fheb-
2.6 Multiple repositories can hold the same ex- lic files of the project (this is achieved by simply assumihgtt
ports everything under a directory named ¢ isn’t public and there-

Only one entity (e.g. a company or a developer) will formalfpre iSn't exported). It also inserts the keywantport into the
export version X of library Y. Therefore everyone in the vaori€XPorted version of thexcpj file to flag it as exported.
should be able to agree on what that export actually is. It is’/hen generating an MSVC solution that links against an ex-
therefore appropriate to check-in a given export into anyioer ported library, |t'|s possible to generate a utilityc pr o] prOJECt'

of distinct source code repositories. It shouldn't creaiefosion fll€ that conveniently allows the (read only) public headtersfi
because they should all be identical. This is important lmsal t© P€ viewed by the developer. This option is available tgfou
for a given repository to be self sufficient or autonomoug.(e €S0l uti onCont ai nsPr epackagedPr oj ect s flag that
allow developers to build software despite only having aste C€&n P€ assigned in.axcpp configuration file (see section 5.1).

a single repository).

2.9 Public header files

2.7 Build and export directories The Xcpp Build System sets up additional includes for the-com
noiler that match the sequence of paths to the physical tretbei
Input virtual tree. When a programmer usesi acl ude direc-
tive to a public header file in a different project, a logicatip
to the header file is recommended. This will always bind to the

2. Avirtual tree (defined by an ordered list of paths to phgisicaPpropriate file in the virtual tree.

trees), treated as thﬂput for the build process. Libraries typlcally define one or more pUb“C header filed tha
are regarded as part of the output of the build to be expotted.

3. The path to théuild directory(used for all generated inter-Xcpp build system supports the copying of public header files
mediate files that are output by the build process) from the input virtual tree to the output export directoryhi§
) is done without changing the relative path from the root & th
4. The path to thexport directory used to store the usefulirtyal tree. Therefore public header files in the exporedir
output of the build process. tory have the same logical path as they do in the input virtual
o)]] tree. This allows dependent projects to be build eithemregaine
This information on a given development machine corresporg}iginm source code or else the packaged version with nd feee

to a particulaibuild environment worry about additional includes.
A virtual tree represents the input to the build process. The

output of the build process appears under the build and &xpor

directories. To avoid any confusion the output of the buid 8 Xcpp Project Files

written to a completely separate area which doesn’t overigp

the input. i.e. it is assumed that the build and export dinées An Xcpp project file typically has extensioncpj , and is the

are not contained within any of the physical trees specifiglé counterpart to a MSVCvcpr oj file. It specifies all the com-

input virtual tree. piler and linker command line options and the set of projées fi
For a given solution, the output of the build is written tcheit to be compiled and linked to build a single target. Unlike a

the build directory to hold the intermediate build files, ¢see . vcpr oj file, a. xcpj file is intended to be directly edited by

In order to build an MSVC solution the following must be give

1. The logical path of thexcws workspace file

3

the user. A vcpr oj file can be automatically generated from 8.3 Using the Xcpp Macro Preprocessor
given. xcpj file. The grammar is presented in the appendix.
A lexical scanner similar to the one used for the C progra
ming language is used. It allows the use/of.. or/«...«/
comments throughout the file. White space between tokenQfighe form
not generally significant. ‘ @lef name = substitution-string ‘
In general paths withinxcpj and. xcws files must use for-
ward slashes (not backslashes). Itis an error to includadirlg ~ The preprocessor also providest - @l se directives, mak-
or trailing slash in a path. ing it possible to conditionally define configurations, colep
Every. xcpj file is comprised of the following three sectionsswitches etc. Note however that it is not expected that tkee pr
processor needs to be used very often, if at all.

mhhe Xcpp Macro Preprocessdt] is applied to the xcpj file
before it is parsed. For example it is possible to declarerosac

1. The definitions 0§ TARGET_TYPE and$ROOT_TO PRQJDI R

2. Specification of the configurations, the compiler arfgl4 Variables
linker switches for each configuration across the)]) .
project, and the sub-projects. The following directive Variable is defined like this
can appear (any number of times and in any order)} $name = "ny string val ue”

@nport, config{...}, +cpp{...}, -cpp{...},

tre{...}, -re{...}, #link{...}, -link{...}, Variables can be defined in botlxcpj and. xcpp files. A
subproj{...}, directories, prebuildevent{...}, variable can be reassigned a new value. Currently variailes
prelinkevent{...}, postbuildevent{...}, only be “invoked” from within string literals (meaning thtte
tool Files{...}, general{...}. variable reference of the forg nane) is replaced with its current

value within the string literal, rather like a macro suhstan).
lote that the brackets are used in a reference but not a dfinit
Fa variable. E.g.

3. The set of files in the project, in the form of a tree stru
ture using curly braces to represent nested directories.
section 3.13.

+link

{
3.1 Targettypes / OUT: " $(EXPORT) / $(PLATFORM) / $(CONFI G) /
i .)) $(PROINAVE) . $(TGT_EXTENSI ON) "
There are five possible types of target for a given projecé tah

get type is represented in a variable namesRGET_TYPE which
must be defined at the beginning of.axcpj file and whichcan The variables defined in thexcpp file (but not the. xcpj

take on one of the following double quoted string values: file itself) are made available as macros to the Xcpp Macre Pre
processor by enclosing the variable name in underscores. E.
there are macros namedxPORT _ and_PLATFORM .

" Appl i cation"

"Static Library"
"Consol e Application”
"Dynami c- Li nk Library" . .
“Uility Project" 3.4.1 Predefined variables

The predefined variablgTer EXTENSI ON is calculated auto- 1he following variables are predefined:
matically from the specified target type. This takes on tHaeva)
vexe" for an application:1i b* for a static library ordi 1 * fora ® $(PROUNAVE) - the name of the project.

dynamic link library.
y Y e $(EXPORT) - the path to the export directory relative to the

. . build directory.
3.2 Project directory

-Th f il
It is assumed every project is uniquely identified by the Iog-. HIARELTYPE) @ type of target to be built

ical_ path to_ itsproject directory Norma_lly aII_ the files in_ & o §(TGT_EXTENSI ON) - Eitherexe", "di 1" or*lib" depend-

project live in the tree rooted at the project directory. leti iNg ONSTARGET TYPE.

ately after the definition o§TARGET_TYPE, an. xcpj file must

define the variableroor_To_PRQJDI R which specifies the logi- e $(RrRooT_TO PROUDIR) - The path from the virtual tree root

cal path to the project directory. A predefined variable néame to the project directory.

$PRQIDI R_TO ROOT is automatically calculated as the inverse of

$ROOT_TO_PRQJDI R. e $(PROIDI R TO ROOT) - The path from the project directory
By convention the name of the project directory is regarded to the virtual tree root.

as theproject name It is not assumed that project names are

globally unique. However this assumption is made within a® $(PLATFORV - The name of the platform. E.gwn32" or

given solution. The project name is implied from the value of "Pocket PC 2003 (ARW4)"

$ROOT_TO PROUDIR (i.e. it is always the last directory name in]) .]

this path). The project name is automatically made avalaba ~ ® $(CO\FI G - The name of the configuration - typically either

variable name@PRQINANE. "Rel ease” Or" Debug”.
Files that are not exported are conventionally stored uader
directory namedrc un_der the project directory. 3.5 Example of a .xcpj file
For example if $PRQIDIR TO ROOT="x/y/z" then
$PROINAME="z" and $PRQIDIR TO ROOT="../../..". Also The following Xcpp project file (xcpj), located at

it is assumed that the associatexicpj file will have logical Ceda/ cxPython/src/ cxPython. xcpj is used to build cx-
pathx/y/ z/ srci z. xcpj . This convention is used for all projectsPython.dll:

4

- - - "Debug Uni code| Wn32" ["Debug" "Unicode"]
$TARGET_TYPE = "Dynani c-Link Library" "Rel ease Uni code| Wn32" ["Rel ease” "Uni code"]
$ROOT_TO PRQIDI R = " Ceda/ Cor e/ cxPyt hon" " Debug| Pocket PC 2003 (ARW4)" ["W nCE"]

Xcpp "Rel ease| Pocket PC 2003 (ARW4)" ["W nCE"]

" Debug| Smar t phone 2003 (ARWA4)" ["W nCE"]

@nport "Cedal/ BaseDef aul ts. xcpj h" "Rel ease| Smar t phone 2003 (ARM/4)" ["W nCE"]

@ nport " Ceda/ Li nkPyt hon. xcpj h" }

subpr oj Each entry is of the formconf i g| pl at f or i plus optionally a

list of any number of white space delimited tags in squareksra
ets. In the above case there are 6 configurations and 3 pietfor

" Ceda/ Core/ cxUtil s"
" Ceda/ Cor e/ cxObj ect "

} The tag'wnCe" has been applied to the last 4 configurations.

(For a given entry of the formconfi g| pl at f or nt', the config
"gre" is available in a variable namex coNFl G and the platform in
{ a variable named(PLATFORV) . E.g. the platform and config

" Assi gnFr onPyCbj ect . cpp"

names can be used to specify the output file of the linker:
"Boot St rapCedaMbdul e. cpp”

" Box| nt 64. cpp" + i nk

" Box| nt 64. h" {

"Uility.cpp" / OUT: " $(EXPORT) / $(PLATFORM) / $(CONFI G) /
"Uility.h" $(PROINAME) . $(TGT_EXTENSI ON) "

"W apEnum cpp" }

"W apNanmeSpace. cpp”

"W apd ass. cpp"

"W apd obal Functi on. cpp”
"W apPoi nt er Val ue. cpp"
"W apArrayVar . cpp"

A config block can be repeated to add more and more config-
urations. This can be useful in@nport file which specifies a
base set of configurations, yet allows projects to add amiditi

ian EnuatiicScppl) configurations.
,,wngeggi’/;'“t ;Ergpg' cpp Unfortunately in both versions of MSVC that were tried (VC
P $CPP 2005 and VC 2008) the IDE allows the user to select configura-

"W apVect or. cpp"

"W apAttributeOnlnterfacePtr.cpp" tions that were never defined, such as
"W apl nterfacePtr.cpp"

"W apMet hodOnl nt erfacePtr. cpp”
"W apMet hodOnd assVari abl e. cpp"
"W apModel Struct Var. cpp”

"W apMbdel ArrayVar. cpp”

‘ Debug Uni code| Pocket PC 2003 (ARMA) ‘

VC even allows the user to try to build it! Not surprisingly
the build fails (e.g. because the additional includes areven

"W apMbdel Vect or Var . cpp" -
"cxPyt hon. cpp" defined). . . .
" cxPyt hon. rc” Note that a configuration that targets WinBfustname the
" Resour ce. h" platform"w n32" or else MSVC gets upset. It is unknown why
"StdAfx.cpp” @ +cpp { /Yc"StdAfx.h" } this is the case given that every imaginable setting is §ipeci
" St dAf x. h" o D - :
} explicitly in the . vcpr oj file, raising the question of why the
" cxPyt hon. h" platform name is significant.

}

3.8 Configuration lists

Compiler and linker switches can be applied to particulafige

o . _ _urations, expressed using combinations of the following:
Normally a project imports the configurations and the coerpil

and linker switches from another file, avoiding the needp@e¢ e Configuration names (such asebug" oOr " Rel ease")
these settings in every project.

An imported file can in turn import other files and so on indef- ® Platform names (such as#n32" or "Pocket PC 2003
initely (as long as there is no cycle). An imported file may nkefi (ARM4) "
macros and variables that are visible from the file that isshe
import directive. Also an imported file can define configuras,
apply compiler and linker switches and add subprojects.

An imported file normally only represents a part of a project)
file, and the convention is to use the extensiapj h instead of ~ ® Target types (i.e. values OfTARGET_TYPE such as
Xcpj . " Appl i cation" OF "Dynani c- Li nk Library")

Typically a logical path to the file to imported is used. The fil
will be searched in the virtual tree accordingly. Altermaly a
path that is relative to the physical location of the file @nihg
the @ nport directive may be used.

3.6 Importing files

e Configuration tags (such asv nce", " MBCS" Or " Uni code")

e Compiler version names (such-ags" or " vce")

As an example, the following switches are applied to all con-
figurations namedrel ease" (i.e. irrespective of the target type,
platform and compiler)

+cpp(" Rel ease")
3.7 Configuration set It
/ FD
The following is an example of how to define the set of configu{ /b " NDEBUG'
rations: }
config +l i nk(" Rel ease")
{
" Debug| W n32" ["MBCS"] | PROFI LE
"Rel ease| Wn32" ["MBCS'] I MAP: " $(EXPORT) / $(PLATFORM) / $(CONFI G) /

$(PROINAME) . map” {
/ | NCREMENTAL: NO /D " _MBCS'
/ OPT: }
/ OPT: | CF
} Ercpp("Uni code", "WnCE")
Even though there is some risk of confusion to a C/C++ /D "_UNICODE" /D "UN CODE"
programmer,’ | denotes a logical ANDing. This is done }
because Microsoft have set a precedent for using the synte ..., «yn32")
confi g| pl at f or mfor a particular configuration on a partic- |{
ular p|atfo|’m_ /fp:precise /D "WN32"
E.g the following switch is applied to the configuration }
"Rel ease" for platform"w n32" +cpp(" W nCE")
+cpp(" Rel ease| W n32") /Os I GR /fp:fast
s /D " _W N32_WCE=0x420"
) /D " UNDER_CE"
/D "W NCE"
. . /D "W NDOWSCE_DLL_EXPORTS"
The order doesn’t matter - the following works just as well: /D " ARM i
+cpp("W n32| Rel ease") ;B _C\VRM_D‘II_L"
{ =
I \D }
} +cpp(" Pocket PC 2003 (ARWA4)")
In fact any of the specifiers can be ANDed in this way. E.g. { /D "WN32 PLATEORM PSPC"
we can use a tag name: } - B
+cpp(” Rel ease| W nCE") +cpp(" Smar t phone 2003 (ARWA4)")
VLT /D "W N32_PLATFORM WFSP"
i)
A comma delimited list of strings is used for logical ORINg. | +cpp(" Rel ease")
E.g.
/Q /FD /D " NDEBUG'
+cpp(}
" Debug| W nCE| Consol e Application| VC9",
" Debug| W n32| Appl i cati on") +cpp(" Debug")
{ {
/'Mrd /ad /Gm /RTCL
} /D "_DEBUG' /D "DEBUG'
}
. . + " Rel W n32" / D
3.9 C++ Compiler switches o ebusiwaoes T oy
: . . . + " Rel W nCE" /' MT
Compiler switches can be incrementally added (usiagp) or +ggg§ "Debﬁgf\% nCE") % de }}

removed (with- cpp) in a top to bottom reading of thexcpj
file. For example:

+cpp
{

/' nol ogo /WB /Znb00 /Zi [EHsc

/ D " _CRT_SECURE_NO_DEPRECATE"

/ Yu" St dAf x. h"

[Fp" ./ $(PLATFORM / $(CONFI G) / $(PROINAME) /

$(PROINAME) . pch”

/ Fo" ./ $(PLATFORM / $(CONFI G) / $(PROINAME) / ™

/ Fd" ./ $(PLATFORM / $(CONFI G) / $(PROINAME) / "
}

+cpp(" Application", "Static Library",
"Dynani c- Li nk Library")
{

}

/D " _W NDOWS"

+cpp(" Consol e Application")

/D " _CONSOLE"

}
+cpp("Static Library", "Dynam c-Link Library")

/D" WNDLL"
/ D " $(PROJNANE) _EXPORTS"
}

+cpp(" MBCS")

6

The compiler switches are additive, making it easy to put-<com

mon switches in a imported file.

Note the following:

e Compiler switches can be added across all configurations or
else a given subset of the configurations.

e Variables can be specified in the fognnane) within the
strings and they are automatically expanded like a macro.

e When specifying relative paths (e.g. for the switches
I Fp, / Fo and/ Fd), it is assumed that paths are absolute or
else relative to the location of the generatedtpr oj file,
which is the build directory.

e +cpp {...}, -cpp {...} can be used to add or remove
compiler switches to all files in the project, or else to in-
dividual files in the project.

e There is support for per file per configuration compiler
switches. See section 3.13.12.

3.9.1 C++ additional include paths

For each project it’s implicit that the following are in thedi-
tional include paths:

e The project directory

e Thesr c directory under the project directory

Additional directories can be added to the include pathsgusi
thes 1 switch. For example:

+tcpp
{

/1 "$(VI RTUAL_TREE)"
/1 "c:/dev/boost"

}

A path is absolute or else relative to the build directorya If
path begins withs(vi RTUAL_TREE) , then a special kind of macro
substitution is performed, where the whole path is repestiet
that the prefix$(vi RTUAL_TREE) is replaced by the path to each

}

/ SUBSYSTEM CONSCOLE

+l i nk(" Application| Wn32")
{

}

/ SUBSYSTEM W NDOWS

+1 i nk(" W n32")

/ MACHI NE: X86

/ MANI FEST

/ MANI FESTFI LE: " $(PLATFORM) / $(CONFI G) /
$(PROJNANE) / $(PROINANE) . $(TGT_EXTENSI ON)
.internedi ate. mani fest"

"kernel 32.1i b"

"user32.1ib"

"gdi 32.1i b"

physical root specified in the virtual tree in turn.

3.10 Resource compiler switches

+rc {...}and-rc {...} blocks are used to define the resource

compiler switches. For example:

+rc

/d " _DEBUG'
/1 0xc09 /x /v
/1 "thirdparty/gadgets/include"

+rc("WnCE")

/d " WN32_\WCE"
/d "$(CEVER)"
/d "UNDER _CE"
/d " $(PLATFORVDEFI NES) "

3.11 Linker switches

The following shows an example of specifying the linker com-

mand line options

+i nk
{
/ OUT: " $(EXPORT) / $(PLATFORM) / $(CONFI G) /
$(PROJNAVE) . $(TGT_EXTENSI ON) "
/ PDB: " $(EXPORT) / $(PLATFORM) / $(CONFI G) /
$(PROJNAVE) . pdb"
| LARGEADDRESSAWARE
/ DEBUG
/ NOLOGO

}
+l i nk(" Dynamni c- Li nk Library")
/ DLL

/1 MPLI B: " $(EXPORT) / $(PLATFORM) / $(CONFI G) /
$(PROJINANE) / $(PROJNAME) . | i b"

}
+l i nk(" Rel ease")
{

/ PROFI LE

| MAP: " $(EXPORT) / $(PLATFORM) / $(CONFI G) /
$(PRQUNAME) . map”

/ | NCREMENTAL: NO

/ OPT: REF / OPT: | CF

}
+l i nk(" Debug")
{

/ | NCREMENTAL
}

+l i nk(" Consol e Application")

"w nspool . lib
"condl g32. i b"
"advapi 32.1i b
"shel 1 32. i b"
"ol e32.1ib"
"ol eaut 32.1i b"
"uuid.lib"
"odbc32.1i b"
"odbccp32. 1ib"

}

+l i nk("W nCE")
{
/ SUBSYSTEM W NDOWSCE, 4. 20
/ MACHI NE: ARM
| ARMPADCODE
/ MANI FEST: NO
/ NODEFAULTLI B: "ol dnanes. | i b"
| STACK: 65536, 4096

“coredl|.lib"
"corelibc.lib"
"ol e32.1ib"
"ol eaut 32.1i b"
"uuid.lib"
"commttrl.lib"

}

Note the following:

e Libraries must be specified in double quotes

e The linker should be regarded as running from the location
of the generatedvcpr oj file - i.e. the build directory.

e Per configuration linker switches can easily be specified (in
the same fashion as for compiler switches)

e Obviously there is no concept of per file linker switches.

3.12 Sub-projects

A subprojectis a project on which the current project depends
(i.e. there is a linking dependency). When a project spedifies
subproject, the logical path to the project directory isegifor
the subproject. For example:

subpr oj

" Ceda/ Core/ cxUtil s"
" Ceda/ Cor e/ cxObj ect "
}

Note the following:

e Sub-projects are specified in an additive fashion. i.e. each
subproj{ ... } directive adds to the overall set of sub-
projects.

e Per configuration sub-projects are not supported

e Each sub-project must be specified using a logical path t{}

the project directory in double quotes. Forward slashes mus

be used. An alternative is for the files in the project to be determined

3.13 Input files (

A tree structure specifies all the files in the project. Fild di
rectory names must be enclosed in double quotes. A strimg+ep
sents a directory name if and only if it is followed by a lefabe.

automatically from the file system:
"src"
" St dAf x. cpp" : +cpp { /Yc"StdAfx.h" }
"+ cpp”
" P

Itis conventional (but not required) to list directorieddre files.

}
{ }
"dir1”
{ o Wild card searching is performed against the virtual tree, a
{ ' therefore may involve searching through multiple phystoags
"filel.cpp” on a development machine.
I' : eL.h” Note thatSt dAf x. cpp isn’t added twice. In general, wild
" : | :g: ﬁfp card searches never add a folder or file with the same logathl p
} more than once.
"dir3"
t.
{d' r4 3.13.2 Name Patterns
"filed.cpp" .
"filed h" We refer to a string such as. cpp" as aname patternA name
} pattern cannot contain any slash characters. Most geyeaeatie
"file3.cpp” patterns can be used to filter either file names or directamesa
} filtes.h For the file namedf oo. bar ", the following name patterns all
successfully match the file name:
"fileb.cpp”
"files. h" &
} fx
In this case the directory structure on disk is reflected e th]f-og* _—
folder structure presented in MSVC, using folder icons foec f+ bar
toriesdir1, dir2, dir3 anddir4. We will see below that itis |f. «r
possible to break this direct correspondence, if it's appate. f?2?. bar
The outermost curly braces is always assumed to enclose t]?Z?'bzf?
content of the project directory (see section 3.2). +200. bar

3.13.1 Wild cards

whereas the following name patterns fail:

The Xcpp build system supports wild cards when specifying « 2f oo. bar
files/directories to add to a project. Consider the follayapec- | f?. bar
ification of the files in a project: g*
*. exe
{
"src"
{

"Archi veTests. cpp”
"CacheMapTests. cpp”
"CRCTest s. cpp"

"Fi | eTests. cpp"

"CQui dTest s. cpp"
"HeapAl | ocTests. cpp"
"HexTests. cpp"

"I ndentingStringStreanTests. cpp"”
"Lessons. cpp"

"MD5Test s. cpp"

"Mul ti SubStringTests. cpp”
"PagedBuf f er Test s. cpp"

" Par ser Denp. cpp"
"PseudoRandonTest s. cpp"

" Sessi onVal ueCacheTest s. cpp”
"ThreadTest s. cpp"

" Ref Count er. cpp"

"Vari abl eLengt hSeri al i seTests. cpp”

"Vect or Tests. cpp”
"Vect or Tests. h"
"xstringTests. cpp"
"xostreanrlests. cpp"
"txUtils.cpp"

" St dAf x. cpp" : +cpp { /Yc"StdAfx.h" }

" St dAf x. h"

3.13.3 Name filters

A name filteris either a prescriptive or proscriptive set of name
patterns,

A name pattern is represented using a double quoted string. A
name filter consists optionally of a '+’ or ’-’, then either imgle
pattern or else a list of zero or more white space delimitad pa
terns in square brackets. An initial - means the specificats
proscriptive (rather than prescriptive, which is the déjawvith
the ’-’a name is rejected if it matches any of the patterngnehs
with '+ a name is accepted if it matches any of the patterns.

The name filter [] means reject nothing, or in other words
accept anything, and is equivalent'to .

Note that the following four lines are all equivalent name fil
ters:

" cpp”
["*.cpp"]
+'%. cpp”
+H["*. cpp"]

3.13.4 Recursive search In this case there are folders in MSVC nantdelader and

Sour ce but no corresponding directories in the virtual tree.
Conversely, in the following exampléi r 2 has been aliased

to an empty string. A flattening affect is achieved, in thatte

There is support for recursion through directories by adpen
an asterisk after the file name filter. E.g.

{ . h files appear directly undeli r 1 instead ofdi r 2.
"dir1"
{ o
“dir2n Edl ri1"
{ .
" “ w " "dir2" as ""
* . *. h *
} ["*.cpp] (
} S
} }
}
In this case all cpp and. h files underdi r 2 or any of its ;

subdirectories recursively are added to the project. Thidcc Use the following mnemonic to help understand this:
cause many folders to be shown under 2 in MSVC. Note
that only non-empty directories are added to tiwepr oj file
and therefore appear in MSVC.

"virtual -tree-directory-nane" as
"MBVC-f ol der - nane"

3.13.5 Flat recursive search 3.13.8 Directory names containing “..”

Recursion through directories can have the structure filettas !tis permissible for directory names to contain. * in the man-
it appears in MSVC. This is easily achieved by prefixing the d&€r illustrated below to step upwards out of the projectadawgy.

terisk with the keyword | at as follows: For example:
($TARGET_TYPE = "Uility Project"”
" dir 1" $ROOT_TO PROIDIR = "x/yl z"
{ t, . .
T AR 5550 ol ot Mo xewstx} /]S
{d'rz IS Il x
D e [. LS Iy
: ["*.cpp .h"] flat I /2
} }
i " /../.." isarightinverse o$rRoOT_TO PRQIDI Rand there-

Now all the. cpp and. h files are displayed in MSVC in afore represents the root of the virtual tree. It is displagsda
single flat list undedi r 2. folder nameds within MSVC. The pattern =. xcws" is applied

recursively to the virtual tree under so we end up with every
Xcpp workspace file in the entire virtual tree.

Using"../.." denotes the directory named and would be
gisplayed as a folder namedn MSVC.

3.13.6 Rename a folder in MSVC

It is possible to rename a folder as it appears in MSVC. For

ample: There is a predefined variable namedrQIDI R_TO ROOT
which is calculated as a right inverse $RoOT_TO PRQIDI R.
{ Therefore another way to show all the workspaces in thealirtu
el tree is:
(:
"dir2" as "x" $TARGET_TYPE = "Utility Project”
{ $ROOT_TO PRAIDIR = "x/y/z"
["*.cpp" "*.h"] flat * {
) } "$(PRQIDI R_TO ROOT)" as "Wbrkspaces"
{
} "x. o xcws" flat =
}
Now directory di r 2 will appear as a folder namex in }
MSVC.
In this case the folder appearing in MSVC has been renamed
Wor kspaces, and the. xcws files in the folder are displayed
3.13.7 Using empty strings in a flat list.

as doesn't just allow for renaming. It can also allow a folder to)
be added to MSVC where there is no corresponding directony3id-3-9 Example using macro preprocessor

the virtual tree, and vice versa. This is achieved by usingtgmqre is a more complex example using the xcpp macro pre-
strings on either side ak. E.g.

processor:
{ $TARGET_TYPE = "Utility Project”
"" as "Header” $ROOT_TO PRQIDI R = " Ceda/ CedaExt r as"
{ @ nport "Cedal/ BaseDef aul ts. xcpj h"
"x bt oflat o« directories -".svn"
} @lef nProjFiles = ["*.xcp]" "*.xcws" "*.xcpjh"]
"" as "Source" flat *
{ @lef nProjectFileslnDirs(L) = @or(dir in L) dir
"x.cpp” flat x { nProjFiles }
! } @lef ROOT = "$(PROIDI R TO ROOT) "
{

ROOT as "Workspaces"
{ {
+"x.xcws" flat* "$(MSVC)/ VC i ncl ude" as "nsvc"
} {
ROOT “x.h"
{ }
" Ceda” }
{
nProjectFileslnDirs(["App", "Appl",
"gg'rl;lj..]’) CedaBxtras, *Core, 3.13.12 Applying per file per config compiler switches
i{'—BU' Lo Following a file or file filter (even a recursive one), a coloerth
S[te.exer "w.dl1M] a comma separated list of items can be specified. For C++ files
} each item is one of the following:
nProj Fi | es e +cpp{...} —to add additional compile switches to the files
} } for every configuration

e -cpp{...} — to remove compile switches for the files for

Note that since all thexcws files unders are placed under every configuration

Workspaces, they cannot appear anywhere else. In genelal a fi - _ .
will only show up at most once in a given project - i.e. where it ® +cpp(configs){...} —to add additional compile switches
first appears in a top to bottom reading of thecpj file. to the files for the given configurations

e -cpp(configs){...} —toremove compile switches for the

3.13.10 Directories filter files for the given configurations

While processing thexcpj file from top to bottom, there is a e excl ude — to exclude the files from the build for every con-

global variable that records@irectories Name Filte(DNF) to figuration
be used when recursing into nested directories. Recursilyn o
proceeds into those directories having a name that compiibas "M/G oup”

the currently set DNF. {
The DNF is ass!gned using the keyWOdIdrecFori es fol- _ vge.cpp” * : -cpp(” Rel ease”){/D "BLAH'},
lowed by a name filter following the syntax defined in section +cpp{/ O1}
3.13.3. "f«.cpp" : exclude
In the following example the recurse undkrr 3 will not pro- }
ceed into any directory nametl n, whereas the recurse under noe that since file filters can overlap (in the set of files that

di r 4 will Only proceed into directories that begin with’s’ or d’ they reference), for a given file and Config the effect is rwgh

"x.cpp" flat = : +cpp{/D "BLAH"}

{ take a union of various settings. More precisely for a given fi
“dirl" and config there is a sequence+opp{. ..} and-cpp{...} that
t, G are applied in order in a top to bottom reading of thecpj file

{ to end up with a particular result.
directories -"bin" For resource filessre{...} or-rc{...} items are applicable
tdir3t {-[1+} instead.
di _rectori es +["s*" "d+"]
v G 4 Xcpp Workspace Files
}
} An Xcpp Workspace Filgypically uses the extensioncws. It

—] _ T defines a set of projects to be built (i.e. added to an MSVC-solu
Initially the DNF allows for all directories, which is eqaaent tion). A workspace file is stored in the logical tree and thene
to-[1 (which is also equivalent te[«] or just[+] since the+is s agsumed to be uniquely identified by a logical path. Theze a

optional). _ _ no additional constraints on the possible location of a wpakce
When the source code is checked out from a SubVersion reggs-

itory each directory in the working set contains internaddil gome projects are added to a workspace indirectly. For ex-
stored under a subdirectory namegn. It could be thought that ample, when adding a project, all its subprojects are iritfylic
the fo_llowing sh_ould be us_ed to avoid pulling these hidde#sfiljqded as well. These subprojects may in turn have subpsoject
and directories into the project: and so on that are also added implicitly. Note that a projct i
only added to a MSVC solution once even though it may be a
subproject of many projects.

However this is not actually required because the Xcpp buildOne “parent” workspace can reference another “child”
system automatically ignores directories with the ’hiddea workspace. The parent inherits all the projects defined by th
tribute set. child. This referencing between workspace files can forni-arb
trary DAG structures (i.e. cycles are not permitted). THeeni
tance of projects is transitive.

The file format of arxcws consists of a name (which will be
Itis possible to use absolute paths (i.e. paths that begimavi ysed for the generated MSVC solution file), followed by a list
slash, or begin witlx: / wherex denotes a drive letter). E.g. of double quoted strings enclosed in curly braces. Eachgstri

directories -".svn"

3.13.11 Absolute paths

$MSVC = "C:/Program Fi |l es/ M crosoft Visual
Studio 8"

is a logical path using only forward slashes, either to aqutoj
directory or else to a childxcws file. E.qg.

10

"Qoj ect”

"Ceda/ Core/ Utils. xcws"

" Ceda/ Cor e/ cxObj ect "

" Ceda/ Cor e/ Obj ect/ exOhj ect "

" Ceda/ Cor e/ Obj ect/ t xObj ect ™
}

4.1 Additional dependencies

Projects can be nested in thgcws file to create additional de-
pendencies between projects when the MS\AT n file is gen-
erated.

A workspace can reference another workspace in order f{
include all the projects and dependencies specified by thg
workspace. This results in the union of all the project depen
dencies.

S Xcpp.exe

Xcpp. exe is a console application able to generate the MSV(
solution and project files in the manner described in thislart
The settings are provided inx@pp configuration file By con-
vention this file has extensiotcpp. The format of this configu-
ration file is described below in section 5.1.

On the command linexcpp. exe takes the path to the con-
figuration file. Any extra command arguments act as though the,
are appended to the end of the configuration file. This allow:
some of the configuration settings to be specified on the con
mand line if that is convenient.

5.1 Xcpp configuration file

The. xcpp file format mostly consists of settings that take the
form nane val ue. Names can be reassigned. In particular
this includes the definition of variables, following the samyn-

tax as in. xcpj files (see section 3.4). In fact these variables
are made available during the subsequent processing ofagach
the. xcpj files. This provides an ideal mechanism to pass in-
formation through to every project. It is particularly usiefor
passing through include and library paths to third partyelites

"c:/w ndows"
"c:/wi ndows/ syst enB2"

}
I NCLUDE =
"$(MBVS)/ VCl i ncl ude"
"$(MBVS)/ VCl Pl at f or nBDK/ i ncl ude"
"$(MBVS)/ VC at | nfc/incl ude"
}
LIB =
"$(MBVS) / VT | i b"
"$(MBVS)/ VC Pl at f or nSDK/ | i b"
“$(MBVS)/ VT at | nfc/ 1 i b"
}

conpiler = vc8

virtual Tree

—~

"c:/dev/ head"
"c:/dev/utils/v2"
"c:/dev/cad/v1l"

}
$EXPORT = "../export"

/'l Enables witing of nore verbose information
/'l to stdout
di agnostics = false

/'l Indicates whether to copy public header files
/1 fromthe input virtual tree to the output

/1 directory $EXPORT

export Publ i cHeaders = true

/1 Indicates whether to copy dll and exe files
/1 fromthe input virtual tree to the output
/1 directory $EXPORT.

repackageExecut abl eTargets = true

/'l 1 ndicates whet her pre-packaged projects in
/1 the input virtual tree are to appear in the
/1 MBVC sol ution.

sol uti onCont ai nsPrepackagedProj ects = true

/'l I ndicates whether public header files copied
/1 fromthe input virtual tree to the output

/] directory $EXPORT wi ||l be nade read only.
makeExport edHeader Fi | esReadOnly = true

.sln files

/| Generate MSVC .vcproj and

node = gen

(like boost). o In general,. xcpp config files support reassignments of vari-
xcpp. exe actually allows for building all the targets by rungples. Only the last assigned value of a variable takestefféis

ning the C++ compiler, resource compiler and the linkerifitsecompined with the support fan nci ude directives makes it pos-
To allow this it must be provided with PATH, LIB and INCLUDEgipe to inherit default values and override a small subg¢he

variables. The values of these variables must be white sexcesettings.
limited strings enclosed in curly braces.

The compiler can be set t@6, vec8 or veo. This affects the
generation of thevcpr oj and. sl n files for MSVC.

The variablevi rtual Tree is assigned with an ordered list ofrpe following settings are relevant to ttranslationmode avail-

paths to the roots of the physical trees. These paths cansbe agple toxcpp. exe. Translation is outside the scope of this arti-
lute or else relative to the build directory. cle.

The variablesexPorRT must be assigned with the path to the
export directory. This path can be absolute or else relaithe
build directory.

There are a number of boolean flags that can also be set. The
are detailed in the example of acpp file given below:

5.1.1 Settings relevant to translation

/'l If true causes xcpp to wite the files under
/'l ./source w thout conpiling and |inking them
/] using the VC conpiler and |inker.
translateOnly = fal se

$MSVS = "c:/Program Fil es/ M crosoft Visual /'l Forces xcpp to rewite all files under

Studio 8" /'l .lsource
rebui | dAIl = fal se
/1 VC8 professional
PATH = /'l Indicates whether to rewite files under
/'l ./source that are token equival ent

"$(MBVS) / VC/ bi n" = fal se
" $(MBVS) / Common7/ | DE"

"$(MBVS)/ VC Pl at f or nBSDK/ bi n"

wri t eTokenEqui val ent

/1 Indicates whether xcpp translated files

11

/1 written under ./source are nade read only.
makeTr ansl at edFi | esReadOnly = true

A .Xxcpj grammar

We use [2] to define the EBNF syntax. Lt i ngLi teral stand
for a double quoted string literal andt Li t eral for an integer

literal.

The grammar is presented in bottom up order (i.e. there is
tendency to define non-terminals before they are refergnced

A.1 Configurations

target Type =
""Application"’ |
""Static Library" |
" "Consol e Application"’ |
""Dynam c-Link Library"’ |
""Utility Project"’;

conpi | er Name =

""yeB" | '"ve8" | ' "vc9"':

(* E.g. "Debug" *)
configNane = stringLiteral;

(*» E.g. "Wn32" x)
pl atfornName = stringLiteral;

(*» E.g. "Debug| Wn32" =)
configAndPl atform = stringLiteral;

(* E.g. "WnCE" *)
tagName = stringLiteral;

(* E. g. "Debug| Wn32"
si ngl eConfi gDef =
confi gAndPI at f orm
[

I

["Uni code"])

[, {tagName}, ']’

configsDef =
‘config,
e
{ singl eConfigDef },
"3

(» E.g. "Debug| WnCE| vc8"

Each string between the | nust be either a

tagName, configNane, platforniNane,
conpi | er Name or targetType
)
configRef = stringLiteral;
(* E.g. ("Debug| WnCE|vc8", "Wn32"))
configReflList =
Y,
[configRef, { ',’, configRef }],
")

Grammar for configurations

A.2 C++ Compiler switches

cppBool Swi tchl =
ICR | /A | TIGS | T IGQ | ' fp:except’;
cppBool Switch2 =
"/nologo’ | /O | "/Op | IOy | /G|
X | Ic | IGe | '/Gr | T /RTCe |
lza | /3 | 'lopennp’ | '/Fx' | '/doc’ |
IWK | /W64 | ' /showl ncludes’ | '/u |
"IFC | 'zl | ' /Zc:wchar_t’ |
"/ Zc:forScope’ | '/QRinterwork’ | '/QRfpe’;

cppEnunBwi tch =

/o | t/or | /e | T o

Il | /b2 |

o | TIos |

"/EHsc’ | '/EHa' | '/GX |

"/RTCs’ | "/RTCu | '/RTCl' | '/RTCsu’ |
I |

/MU /MId | /MDD T/ NVed |
"1Zpl | '/Zp2' | ' /Zp4d | '/Zp8 | '/ZplE’
"I QRarch4’ | '/ QRarch5’ | '/ QRarch4t’ |
"/ QRarch5t” |

ITC | TP
"/larch: SSE | '/arch: SSE2’ |
"/fp:precise’ | '/fp:strict’ | '/fp:fast’ |
"/FA | "/FAcs’ | 'IFAc’ | '/FAs’ |
"IFR | I Fr |
W W | W) W T WY
rzro| iz | oz |
B B € S B A €A
"/errorReport:prompt’ |

"/ errorReport: queue’ |
“lclr’ | "lclr:pure | '/clr:safe’ |

"/clr:noAssenbly’ | '/clr:oldSyntax’;

cppStrArgSwitch =

"/Fd” | '/Fe’ | "/Fo’ | "IFp | 'IFR;
cppListStrArgSwitch =

2N TR I o R = IR (R = U I U
cppPchSwitch =

IYe | IYw | TIYX

cppConpi l erSwitch =
cppBool Switchl, ['-"] |
cppBool Swi tch2 |
cppEnuntwi tch |
cppStrArgSwi tch, stringLiteral |
cppListStrArgSwi tch, stringLiteral |
cppPchSwitch [stringLiteral];

Grammar for C++ compiler switches

A.3 Resource Compiler switches

rcBool Switch =
I v

rcStrArgSwitch =
"Ifo’;

rcListStrArgSwitch =
et ld)

rcConpilerSwitch =
rcBool Switch |
rcStrArgSwi tch, stringLiteral |
rcListStrArgSwitch, stringLiteral;

Grammar for Resource compiler switches

A.4 Linker switches

|'i nkBool Switch =
"/ NOLOGO | '/ NCENTRY' | '/1GNOREIDL' |
"/ NOASSEMBLY' | '/ DELAY: UNLOAD | '/ RELEASE
"/DEBUG | '/SWAPRUN: CD' | '/ SWAPRUN: NET' |
"/ PROFILE | '/ NMAPI NFO EXPORTS | '/ MAP |
'’/ NODEFAULTLI B | '/ DELAYSIGN |
" | CLRUNVANAGEDCODECHECK' ;
machi ne =
"X86" | 'IX86" | '1386" | 'AMB3 |
"ARM | "EBC | 'I1A64" | 'M32R |
"MPS | "MPS16’ | 'MPSFPU |
"M PSFPUL6’ | ' M PSR41XX | 'SH3' |
"SH3DSP' | 'SH4’ | "SH5' | ' THUWB' |

12

' X64'; 378
subsystem = |'i nkSpec =
" CONSOLE' | ' W NDOAS' | C+ |-,
" NATIVE' | ' EFI _APPLI CATION | "link,
' EFI _BOOT_SERVI CE_DRI VER' | [configRefList],
"EFI_ROM | ' EFI _RUNTI ME_DRI VER | o,
"POSI X | W NDOASCE' ; { linkSwitch },
A
opt = . . .
"NOREF | 'REF' | "NOCF | 'ICF | Grammar for applying switches to configs
" NOW N98' | ' W NO8’ ;
i nkKEnunBwi tch = . .
"/ MACHI NE: ', machi ne | A.6 Project files
'’/ SUBSYSTEM ’, subsystem |
"/ OPT:’, opt | This is the relevant part of the grammar involved with spgad
"/DRIVER, [':UPONLY' | ':VDM] | the files that comprise the project. It supports nested wires,

' | ASSEMBLYDEBUG , [’:DISABLE'] |
"/ INCREMENTAL’ , [':NO] |
"/MANIFEST', [':NO] |
"IFIXED, [':NOT |

"/TSAVARE , [':NO] |

" | LARGEADDRESSAVARE , [':NO] |

wild cards, recursion, flattening, renaming.

pattern = stringLiteral;

directoryNane = stringLiteral;
fol derName = stringlLiteral;

"/LTCG , [’ :PGA NSTRUMENT' | ':PGOPTIM ZE |
' : PGUPDATE'] | ChE " ey
, :) . * E.g. +["*.cpp” "x.h"] x)
/VERBOSE' , [':LIB] | nameFi | ter =
"/ ALLOW SCLATI ON: NO | °° || "]
' | CLRTHREADATTRI BUTE: *, (' MIA" | ' STA) | pattern | '[’, {pattern}, ']':
"/ CLRIMAGETYPE: ', ('1JW | 'PURE | ’'SAFE') |
'/ ERRORREPORT: *, (' NONE' | 'PROWPT' | ' QUEUE); (+ E g directories -[] *)

directoriesFilterDef =

linkStrArgSwitch = "directories’, nameFilter;

"/DEF | "/BASE' | '/ENTRY' | '/IDLOUT |
/TLBOUT | '/TLBID | '/PCGD | '/ORDER | (*» E.g. +cpp{/QO1} *)
"/ MANI FESTFILE | '/QJT" | '/VERSION | fileOpt =
"/IMPLIB | '/PDB | ’/PDBSTRI PPED | " excl ude’ |
"/MDL | '/KEYFILE | '/KEYCONTAI NER | cppSpec |
"I NAP rcSpec;
l'inkListStrArgSwitch = o (B "w.cpp" flat * : +cC /D "BLAH'} =
'/ MANI FESTDEPENDENCY’ | Ei | e'sg'pec PP - eent b
"/ ASSEMBLYMODULE' | '/ ASSEMBLYRESOURCE' | nameFi | t er
| ASSEMBLYLI NKRESOURCE' | [['flat’] L]
"/ I NCLUDE' | '/DELAYLOAD | [:7, fileOpt, {",", fileOpt} 1;
/ NODEFAULTLI B | ' /LIBPATH ;
)) dirEl ement =
reserve = intLiteral; filesSpec |
conmmt = intLiteral;

directoryNane, ['as’, folderNane],

l'i braryNane = stringLiteral; di rectoryStructure;

linkSwitch = directoryStructure =

||nkBOO|SV\ﬁtCh| r{r' {dirEIenEnt}, 1}|;
| i nkEnunBwi t ch |
linkStrArgSwitch, ":’, stringLiteral | Grammarforprojectf“es
linkListStrArgSwitch, ':’, stringLiteral |
('/HEAP:" | '/STACK'), reserve, [',’, commt] |
|'i braryNane;

Grammar for linker switches A.7 Entire file

var Name = identifier;
varVal ue = stringLiteral;

A.5 Applying compiler and linker switches

. . " path = stringLiteral;
This part of the grammar concerns the incremental additi®e-0 || ogj cal Pat hToProj Dir = pat h;

moval of compiler or linker switches, either to all configtimas

or else to specified configurations. subProj Spec =
"subproj’,
cppSpec = 1
C+ -7, { logical PathToProjDir },
‘cpp’, 3
[configRefList],
{0 t ool Fi |l esSpec =
{ cppConpilerSwitch }, "tool Files’,
"3 e
{ path },
rcSpec = B
CH o),
‘rc’, description = stringLiteral;
[configRefList], command = stringlLiteral;
e
{ rcConpilerSwitch }, event Spec =

13

(" prebuildevent’ | 'prelinkevent’ |
" post bui | devent),

[configRefList],

T

description,

command,

B

genKey =
"QutputDirectory’ |
"Internedi ateDirectory’ |
" Del et eExt ensi onsOnCl ean’ |
" Bui | dLogFil e’ |
"I nheritedPropertySheets’ |
" ConfigurationType’ |
" UseOX MFC' |
" UseOF ATL' |
" ATLM ni mi zesCRunTi neLi braryUsage’ |
" CharacterSet’ |
" ManagedExt ensi ons’ |
" Whol eProgranOptim zation’;

genSetti ngsSpec =
" general ',
[configRefList],
[
{ genKey, '=', stringLiteral },

b

xcpj El ement =
' xepp’ |
“export’ |
'$, varNane, '=, varValue |
"@nport’, path |
cppSpec |
rcSpec
Li nkSpec
subPr oj Spec |
configsDef |
directoriesFilterDef |
t ool Fi | esSpec |

event Spec;
xcpjFile =
"$TARGET_TYPE', '=', targetType,
"$ROOT_TO PROIDIR, =", | ogical PathToProjDir,

{ xcpj El enent },
directoryStructure;

Grammar for .xcpj file

References

[1] Xcpp Macro PreprocesspiD. Barrett-Lennard, Jan 2010,
http://ww. cedanet. com au/ ceda/ Xcpp%20Macr 0%
20Pr eprocessor . pdf .

[2] ISO/IEC 14977:1996(E).Information technology - Syn-
tactic metalanguage - Extended BNH-irst edition
1996-12-15. http://standards.iso.org/ittf/
Publ i cl yAvai | abl eSt andar ds/ s026153_1 SO _| EC_
14977_1996(E) . zi p.

14

