Introducing CEDA

David Barrett-Lennard
Cedanet Pty Ltd
Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

CEDA is a high performance database technology and software
development platform that uses Operational Transform#@d)

to support replication and synchronisation for collabweatiata 0; .‘ time
entry performed by multiple users. CEDA is an ideal platform \\ '. 0O
for Computer Supported Collaborative Work, allowing mplkti g¢ate 5, Nt
users to edit that same data concurrently. Users can caodtEho _- 2N state S
in a interactive, real-time manner or work in isolation andtcol 0, @ - \\ 2
when changes are propagated to/from other users. ! “ o
2

This paper provides an introduction to CEDA and some of t -

platform’s features.

state S

Site 1

state S

Site 2

1 Overview

CEDA is an ideal platform foComputer Supported Collabora-

tive Work (CSCW). It is essentially a high performance database
technology that use®perational Transformation (OT) to sup-
port replication and synchronisation for collaborativéadentry ~ The use of OT is apparent in two ways:
by multiple users.

Each site persists its own copy of the data in a local databas® A USEr can always manipulate the position of a jigsaw piece
and changes (called operations) are always applied imtetglia Without latency.

on the site where they are generated — i.e. independently of A ,ser is able to continue working if the network becomes
network latency. The principle is that multi-user applicas can partitioned. When network connectivity is re-established,

and should be as responsive as single user applicatioriso kla many jigsaw pieces may suddenly move as databases resyn-
lows users to continue working when there are network ostage chronise

A group of sites can be configured to support real-time edit-

ing of the replicated data. In that case the operations are exThjs application has the remarkable property of allowinersis

changed between sites asynchronously in the background ini@work offline for hours on a 5000 piece jigsaw, and the change
der to synchronise the databases. This can easily happke agdn be merged in less than a second.

rate at which users type on the keyboard or manipulate abject
with the mouse. Applications are highly interactive, evemet-
works with high latency and low bandwidth.

CEDA is not restricted to real time collaboration. It alsioais
users to work in isolation and control precisely when charage OT avoids the need for distributed locking and distributeahs-
merged. The platform allows for branching and merging of tlaetions, by applying operations in different orders atedéht
entire database, supporting manual check-ins, check-apts sites. It was pioneered 20 years ago [1]. The key idea is fhat 0
dates, tagging and so forth in a similar manner to source cedations sent to a remote site are transformed as requiriepo
repository systems like ClearCase and Subversion. achieve the equivalent effect where they are applied.

The OT algorithms employed by CEDA are extraordinarily ef- In Figure 1 operationé);, O, are executed at sitdsand2 re-
ficient, allowing users to work off-line for long periods dfie spectively. Itis assumed the sites are initially in the sataesS,
and then quickly synchronise with other users. and applying the operations leads to divergent stétesnd.S,.

The operations are sent over the network and are transfaioned
O} and O}, so as to preserve the original intentions of the op-
erations and also to ensure the two sites converge to the same
final state, even though they executed the operations ierdit

A simple jigsaw demonstration application has recentlyntad® orders.

veloped that allows hundreds of users to work on a sharealjigs We can depict this with the state transition diagram shown in
A given user may see dozens of jigsaw pieces all moving in r&dure 2.0, = IT(O2, O,) denotes thénclusion Transforma-

time as operations are received from other sites. tion of O with respect ta); . Itis the transformed version 6i

Figure 1: Operational transformation for two sites

3 Operational transform

2 Jigsaw demo application

state S; (apply O; to state S)

0,=1T(0,,0,) (transformation of O,)

Both sites converge to the
same final state

Initial
state S

0,=1T(0,,0,) (transformation of O,)

state S, (apply O, to state S)

Figure 2: State transition diagram

"axybc"

0,' = Delete "bc"

O1= Insert "xy" at at position 3

position 1

Initial state
"abc"

axy

0, = Delete "bc" at
position 1

0,' = Insert "xy" at
position 1

Figure 3: OT example on text

Final state

final final
\ state \ state

(68 [oF

0, 0,

initial > initial
0; 0O,
state state

Figure 4: OT cube paths

meetT P2 and therefore may fail to converge for three sites or
more).

Somewhat surprisingly a correct implementation of OT aflow
concurrent edits to always be merged with zero “syntactici-c
flicts. For example, in the case of simple text, the mergeltressu
defined to be the union of all the insertions minus the uniaalof
the deletions. This is only ambiguous in the order of insesi
at exactly the same position. The system resolves this artpig
using some arbitrary total ordering on the sites, and udeesya
find the merging to be faithful because every insertion arid-de
tion has been applied.

4 Multicast, vector clocks and topology

CEDA allows for an arbitrary topology of connections betwee
computers, and will ensure operations are exchanged asadqu
so that all computers eventually receive all operationstixa
once.

An operation can be generated by any computer in the net-
work, and the operation is automatically multicast to alest
computers (note this doesn't involve IP multicast). Thisésy

that has now included; in its execution context. For exampleefficient because an operation will be sent across a givén lin
the insertion position of an operation recording an ineertto at most once. It is even possible for any number of computers
a text field may be shifted as a result of concurrent opersition to “crash” and roll back to an earlier state (that should be-co
the left of the insertion position. Here, concurrent megmera- sistent by virtue of transaction atomicity of each localatiaise)
tions that were not already in the original context of theeitisn and reconnect in an entirely different topology. A compuir

at the time it was generated.

then receive all missing operations to bring it up to datds Tan

Figure 3 provides a more specific examplg. andO, are re- even include operations that originated on that computieréé
spectively insert and delete operations on a shared texihaeat crashed! Note in particular that any two machines can cdratec
initially containing the textzbc. The delete position aD; needs any time and always successfully exchange operations and sy
to be shifted by two characters to the right@sis transformed chronise — even if they have never connected in the past.

to include the effect 0D, .

The system avoids the need for distributed transactiorss, an

This example doesn't convey the complexity of the problea the associated complexity of multiphase commit prokco
and the subtle issues that have led to numerous erroneaus sgktead it only requires simple transient message queueslfo
tions in the literature. Some impression of the problemsahiae communication between sites.
can be seen in the generalisation from two sites to threefevhe QOperations are always applied in an order consistent with th
we end up with a cube where one corner is associated with #agtial ordering associated with causal relationshipg/éen op-

initial state from which three concurrent operatians, 05,03
make changes (metaphorically diverging in three diffeckrec-

erations [4]. This involves the use ctor Clocks[2].

tions). The aim is to transform operations on the faces of the o
cube in such a way that convergence is achieved on the oppdsit OT EﬁlClency
corner of the cube. There are six distinct paths that cankemnta

(two are shown in Figure 4).

According to the literature large networks of replicatethtfases

Convergence requires the following transformation prgpesare not practical due to scalability problems. This is éelydrue

(calledT' P2 in the literature) to be satisfied:

IT(IT(O3,01),IT(02,01)) =
IT(IT(03,02),IT(O1,05))

for conventional approaches - for both pessimistic anchaiptic
locking systems. In [3] it is shown that the number of deakioc
or reconciliations grows with cubic order on the size of the-s
tem. In practise this could mean a machine takes minuteseor ev
hours merging off-line work.

Figure 5 is relevant for two sites that are initially in thenco

It turns out that convergence on each face is insufficienbto enon state S and need to inclusion transform lists of operatio

sure convergence on the cube. Such counterexamples aredefd,; and L,. The inclusion transform of complex operations can
to asT' P2 puzzdes [5] (because many published solutions fail talways be broken down into the inclusion transform of simple

2

L L

$tuple TPoint2d

int32
s int32
L, Ly I

X;
N

$tuple TColour
L {
L, uint8 R,
S uint8 G;
uint8 B;

I

Ly $tuple TJigsawPiece

TPoint2d Position;
bool JoinedOnRight;
bool JoinedOnBottom;

2

$tuple TJigsaw
{
string8 Username;
TColour BackdropColour;
Ly TPoint2d DeskTopSize;
int32 PixelTolerance;
int32 GeometryFactor;
Figure 5: Transforming lists of operations int32 RandomNumberSeed;
int32 NumRows;
int32 NumCols;
TJigsawPiece Pieces][];

IT(Ly, Lo)

L,

IT(Lo,La)

operations. Evidently the naive approach is quadraticensthe ¥
of the lists. . . _

CEDA uses various proprietary algorithms and techniques! Nese data types automatically support persistence afid rep
(that in particular avoid this quadratic complexity, anscavoid Cation using OT. Note as well that CEDA provides very advance

some assumptions made in [3]) making it extraordinarily- effuPPort for schema evolution - i.e. allowing for these dyfees
cient. to evolve over time.

The following code shows some examples of how the pro-
grammer camutate the data directly in C++. These assignments
6 Log structu red store are automatically persisted and synchronised to othes.site

js->NumRows = 10;
The database system uses a proprietaoy Sructured Sore js>NumCols = 12;

suited to the persistence of complex data structures. Tre st | IS~>Pieces[3].Position.X
. . js->Pieces[3].Position.Y
supports recovery, backup, hot standby and is self cleatning

avoid fragmentation. It provides excellent control ovarstér- A reflection system is used that allows the above data types to
ing to optimise read performance, and the ingestion rateetyo he mapped directly to C++ data types, and yet be accessed by

matches the sustained write rate of a hard-disk (e.g. 10688/ other languages like Python though the reflection inforamati
and yet provides proper journaling for atomicity in the faxfe

failures. The clientRunge Limited using this technology said
they found it substantially faster than BTrieve for theipkga- References
tion.

100;
200;

[1] C.A. Ellis and S.J. Gibb<Zoncurrency control in groupware
systems, ACM SIGMOD Record,18(1989), 399-407.

7 Dependency graph SyStem [2] C.J. Fidge, Timestamps in message-passing systems that

preserve the partial ordering, ACSC’'88: Proceedings
of the 11th Australian Computer Science Conference,
Feb 1988. 56-66http:/sky.scitech.qut.edu.au/

~ fidgec/Publications/fidge88a.pdf

The framework provides Bependency Graph Systemused to ef-
ficiently recalculate dependents satisfying one-way caigs.
This is well suited for GUI development because the dependen
cies between visual elements and the underlying persidt¢ats
discovered and managed automatically. This eliminatesiant e [3] J. Gray, P. Helland, P. O'Neil and D. ShasA&ge Dangers
mous burden from the application programmer. of Replication and a Solution, Proceedings of the 1996 ACM

This framework automatically detects cycles in the grapth an SIGMOD International Conference on Management of Data,
early quiescence (i.e. where dependent nodes haven't edang 1996: 173-182.

in value, downstream dependent nodes can avoid unnecessa . .
calculation) P r[)4/1] L. Lamport, Time, Clocks, and the Ordering of Events in a

Distributed System, Communications of the ACM21(July
1978), 558-565.

8 Database schema Spedﬁcation [5] D. Li and R. Li, Preserving Operation Effects Rela-

tion in Group Editors, CSCW’04: Proceedings of the

A key concept is the definition of a database schema in a pur- 2004 ACM Conference on Computer-Supported Cooperative
posely designed language. For example, the following cede i \work, 2004: 457-466.

taken from the jigsaw demonstration application:

