
Introducing CEDA

David Barrett-Lennard
Cedanet Pty Ltd

Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

CEDA is a high performance database technology and software
development platform that uses Operational Transformation (OT)
to support replication and synchronisation for collaborative data
entry performed by multiple users. CEDA is an ideal platform
for Computer Supported Collaborative Work, allowing multiple
users to edit that same data concurrently. Users can collaborate
in a interactive, real-time manner or work in isolation and control
when changes are propagated to/from other users.

This paper provides an introduction to CEDA and some of the
platform’s features.

1 Overview

CEDA is an ideal platform forComputer Supported Collabora-
tive Work (CSCW). It is essentially a high performance database
technology that usesOperational Transformation (OT) to sup-
port replication and synchronisation for collaborative data entry
by multiple users.

Each site persists its own copy of the data in a local database
and changes (called operations) are always applied immediately
on the site where they are generated — i.e. independently of
network latency. The principle is that multi-user applications can
and should be as responsive as single user applications. It also al-
lows users to continue working when there are network outages.

A group of sites can be configured to support real-time edit-
ing of the replicated data. In that case the operations are ex-
changed between sites asynchronously in the background in or-
der to synchronise the databases. This can easily happen at the
rate at which users type on the keyboard or manipulate objects
with the mouse. Applications are highly interactive, even on net-
works with high latency and low bandwidth.

CEDA is not restricted to real time collaboration. It also allows
users to work in isolation and control precisely when changes are
merged. The platform allows for branching and merging of the
entire database, supporting manual check-ins, check-outs, up-
dates, tagging and so forth in a similar manner to source code
repository systems like ClearCase and Subversion.

The OT algorithms employed by CEDA are extraordinarily ef-
ficient, allowing users to work off-line for long periods of time
and then quickly synchronise with other users.

2 Jigsaw demo application

A simple jigsaw demonstration application has recently been de-
veloped that allows hundreds of users to work on a shared jigsaw.
A given user may see dozens of jigsaw pieces all moving in real
time as operations are received from other sites.

time 

 state S2  

state S1 

O'2  

O'1  

O2  

O1  

state S  
state S  

Site 1 Site 2 

Figure 1: Operational transformation for two sites

The use of OT is apparent in two ways:

• A user can always manipulate the position of a jigsaw piece
without latency.

• A user is able to continue working if the network becomes
partitioned. When network connectivity is re-established,
many jigsaw pieces may suddenly move as databases resyn-
chronise.

This application has the remarkable property of allowing users
to work offline for hours on a 5000 piece jigsaw, and the changes
can be merged in less than a second.

3 Operational transform

OT avoids the need for distributed locking and distributed trans-
actions, by applying operations in different orders at different
sites. It was pioneered 20 years ago [1]. The key idea is that op-
erations sent to a remote site are transformed as required sothey
achieve the equivalent effect where they are applied.

In Figure 1 operationsO1, O2 are executed at sites1 and2 re-
spectively. It is assumed the sites are initially in the samestateS,
and applying the operations leads to divergent statesS1 andS2.
The operations are sent over the network and are transformedto
O′

1
andO′

2
so as to preserve the original intentions of the op-

erations and also to ensure the two sites converge to the same
final state, even though they executed the operations in different
orders.

We can depict this with the state transition diagram shown in
Figure 2.O′

2
= IT (O2, O1) denotes theInclusion Transforma-

tion of O2 with respect toO1. It is the transformed version ofO2

1



 

Both sites converge to the 

same final state 

O1  

O2  

O' = IT(O ,O )      (transformation of O ) 
2 2 1 2

 

1 1 2 1  

Initial  

state S 

state S2  (apply O2 to state S)  

 

state S1  (apply O1 to state S) 

O' = IT(O ,O )      (transformation of O ) 

Figure 2: State transition diagram

 

Initial state 

"abc" 

O1' = Insert "xy" at 

position 1 

O2' = Delete "bc" 

at position 3 

O2 = Delete "bc" at 

position 1 

O1 = Insert "xy" at 

position 1 

"a" 

"axybc" 

Final state 

"axy" 

IT 

IT 

Figure 3: OT example on text

that has now includedO1 in its execution context. For example,
the insertion position of an operation recording an insertion into
a text field may be shifted as a result of concurrent operations to
the left of the insertion position. Here, concurrent means opera-
tions that were not already in the original context of the insertion
at the time it was generated.

Figure 3 provides a more specific example.O1 andO2 are re-
spectively insert and delete operations on a shared text document
initially containing the textabc. The delete position ofO2 needs
to be shifted by two characters to the right asO2 is transformed
to include the effect ofO1.

This example doesn’t convey the complexity of the problem
and the subtle issues that have led to numerous erroneous solu-
tions in the literature. Some impression of the problems that arise
can be seen in the generalisation from two sites to three, where
we end up with a cube where one corner is associated with the
initial state from which three concurrent operationsO1,O2,O3

make changes (metaphorically diverging in three differentdirec-
tions). The aim is to transform operations on the faces of the
cube in such a way that convergence is achieved on the opposite
corner of the cube. There are six distinct paths that can be taken
(two are shown in Figure 4).

Convergence requires the following transformation property
(calledTP2 in the literature) to be satisfied:

IT (IT (O3, O1), IT (O2, O1)) =

IT (IT (O3, O2), IT (O1, O2))

It turns out that convergence on each face is insufficient to en-
sure convergence on the cube. Such counterexamples are referred
to asTP2 puzzles [5] (because many published solutions fail to

 

initial 

state 

final 

state 

initial 

state 

O2 

O3 

O1 

final 

state 

O2 

O3 

O1 

Figure 4: OT cube paths

meetTP2 and therefore may fail to converge for three sites or
more).

Somewhat surprisingly a correct implementation of OT allows
concurrent edits to always be merged with zero “syntactic” con-
flicts. For example, in the case of simple text, the merge result is
defined to be the union of all the insertions minus the union ofall
the deletions. This is only ambiguous in the order of insertions
at exactly the same position. The system resolves this ambiguity
using some arbitrary total ordering on the sites, and users always
find the merging to be faithful because every insertion and dele-
tion has been applied.

4 Multicast, vector clocks and topology

CEDA allows for an arbitrary topology of connections between
computers, and will ensure operations are exchanged as required
so that all computers eventually receive all operations exactly
once.

An operation can be generated by any computer in the net-
work, and the operation is automatically multicast to all other
computers (note this doesn’t involve IP multicast). This isvery
efficient because an operation will be sent across a given link
at most once. It is even possible for any number of computers
to “crash” and roll back to an earlier state (that should be con-
sistent by virtue of transaction atomicity of each local database)
and reconnect in an entirely different topology. A computerwill
then receive all missing operations to bring it up to date. This can
even include operations that originated on that computer before it
crashed! Note in particular that any two machines can connect at
any time and always successfully exchange operations and syn-
chronise — even if they have never connected in the past.

The system avoids the need for distributed transactions, and
all the associated complexity of multiphase commit protocols.
Instead it only requires simple transient message queues for all
communication between sites.

Operations are always applied in an order consistent with the
partial ordering associated with causal relationships between op-
erations [4]. This involves the use ofVector Clocks [2].

5 OT Efficiency

According to the literature large networks of replicated databases
are not practical due to scalability problems. This is certainly true
for conventional approaches - for both pessimistic and optimistic
locking systems. In [3] it is shown that the number of deadlocks
or reconciliations grows with cubic order on the size of the sys-
tem. In practise this could mean a machine takes minutes or even
hours merging off-line work.

Figure 5 is relevant for two sites that are initially in the com-
mon state S and need to inclusion transform lists of operations
L1 andL2. The inclusion transform of complex operations can
always be broken down into the inclusion transform of simple

2



 

S 
L1 

IT(L1,L2) 

L1 

L2 L2 

L1 

L2 

L1 

L2 
IT(L2,L1) 

Figure 5: Transforming lists of operations

operations. Evidently the naive approach is quadratic in the size
of the lists.

CEDA uses various proprietary algorithms and techniques
(that in particular avoid this quadratic complexity, and also avoid
some assumptions made in [3]) making it extraordinarily effi-
cient.

6 Log structured store

The database system uses a proprietaryLog Structured Store
suited to the persistence of complex data structures. The store
supports recovery, backup, hot standby and is self cleaningto
avoid fragmentation. It provides excellent control over cluster-
ing to optimise read performance, and the ingestion rate closely
matches the sustained write rate of a hard-disk (e.g. 100 MB/sec),
and yet provides proper journaling for atomicity in the faceof
failures. The clientRunge Limited using this technology said
they found it substantially faster than BTrieve for their applica-
tion.

7 Dependency graph system

The framework provides aDependency Graph System used to ef-
ficiently recalculate dependents satisfying one-way constraints.
This is well suited for GUI development because the dependen-
cies between visual elements and the underlying persistentdata is
discovered and managed automatically. This eliminates an enor-
mous burden from the application programmer.

This framework automatically detects cycles in the graph and
early quiescence (i.e. where dependent nodes haven’t changed
in value, downstream dependent nodes can avoid unnecessaryre-
calculation).

8 Database schema specification

A key concept is the definition of a database schema in a pur-
posely designed language. For example, the following code is
taken from the jigsaw demonstration application:

$tuple TPoint2d
{

int32 X;
int32 Y;

};

$tuple TColour
{

uint8 R;
uint8 G;
uint8 B;

};

$tuple TJigsawPiece
{

TPoint2d Position;
bool JoinedOnRight;
bool JoinedOnBottom;

};

$tuple TJigsaw
{

string8 Username;
TColour BackdropColour;
TPoint2d DeskTopSize;
int32 PixelTolerance;
int32 GeometryFactor;
int32 RandomNumberSeed;
int32 NumRows;
int32 NumCols;
TJigsawPiece Pieces[];

};

These data types automatically support persistence and repli-
cation using OT. Note as well that CEDA provides very advanced
support for schema evolution - i.e. allowing for these data types
to evolve over time.

The following code shows some examples of how the pro-
grammer canmutate the data directly in C++. These assignments
are automatically persisted and synchronised to other sites.

js->NumRows = 10;
js->NumCols = 12;
js->Pieces[3].Position.X = 100;
js->Pieces[3].Position.Y = 200;

A reflection system is used that allows the above data types to
be mapped directly to C++ data types, and yet be accessed by
other languages like Python though the reflection information.

References

[1] C.A. Ellis and S.J. Gibbs,Concurrency control in groupware
systems, ACM SIGMOD Record,18(1989), 399-407.

[2] C.J. Fidge, Timestamps in message-passing systems that
preserve the partial ordering, ACSC’88: Proceedings
of the 11th Australian Computer Science Conference,
Feb 1988: 56–66.http://sky.scitech.qut.edu.au/

˜ fidgec/Publications/fidge88a.pdf .

[3] J. Gray, P. Helland, P. O’Neil and D. Shasha,The Dangers
of Replication and a Solution, Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data,
1996: 173–182.

[4] L. Lamport, Time, Clocks, and the Ordering of Events in a
Distributed System, Communications of the ACM,21(July
1978), 558–565.

[5] D. Li and R. Li, Preserving Operation Effects Rela-
tion in Group Editors, CSCW’04: Proceedings of the
2004 ACM Conference on Computer-Supported Cooperative
Work, 2004: 457–466.

3


