
Consequences of Operational Transformation

David Barrett-Lennard
Cedanet Pty Ltd

Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

This article discusses some of the consequences of using Opera-
tional Transformation as a basis for replications and synchroni-
sation of data in CEDA.

1 Overview

The Operational Transformation (OT) technique [12] is quite rad-
ical in its approach to concurrency control in a multi-user system.
Before comparing it with the pessimistic locking approach used
by most of today’s DBMS products we first review the main char-
acteristics of these conventional systems.

2 Conventional DBMS systems

The conventional approach to multi-user data management nor-
mally involves a central server which contains all the data,and
many thin clients that only cache small amounts of data on the
client machines. All changes to the database are made withtrans-
actions. A transaction provides the ACID properties:

• Atomicity : the transaction will either be performed in its
entirety or else not at all.

• Consistency: transactions must comply with all integrity
constraints defined on the schema.

• Isolation : transactions performed concurrently by differ-
ent users behave as though they were in fact performed one
after the other (this is referred to as serialisability of trans-
actions). In other words the changes made by transactions
are not visible to each other until after they commit.

• Durability : when a transaction commits, the changes will
be made durable (i.e. won’t be lost, typically by flushing
data to secondary storage).

Most databases today useTwo Phase Locking(2PL) in order
to ensure serialisability of the transactions. This means that vari-
ables are protected with locks and a transaction must lock a vari-
able before access is permitted. According to 2PL, for each trans-
action there are two phases. In the firstexpanding phaselocks are
granted but not released. In the secondshrinking phaselocks are
released but not granted. It can be shown that 2PL is sufficient to
guarantee serialisability of transactions.

The most common approach is to usestrong strict 2PL(S-
S2PL). The expanding phase occurs throughout the executionof
the transaction and the shrinking phase (releasing both shared
read and exclusive write locks) is performed at the end when the
transaction commits or aborts. Unfortunately there is inevitably

a risk of dead-lockscenarios (also called thedeadly embrace)
where two or more transactions cannot proceed because each
transaction is waiting on another transaction to complete in or-
der to release a lock that it requires. The only way to break out
of the dead-lock is to select a so called victim which is aborted -
meaning that all changes must be rolled back.

This strategy is also called pessimistic locking because trans-
actions are blocked on access to a variable on the (pessimistic)
assumption they would violate isolation rules. This can be con-
trast to optimistic locking where a transaction is allowed to pro-
ceed to its end on the (optimistic) assumption that conflict won’t
be a problem [1].

Unfortunately there are some serious downsides to this ap-
proach:

• A centralised remote server means that clients tend to be
exposed to network latency during a client side executed
transaction. Synchronous messages over the wire have an
overhead that is easily amillion and may even approach a
billion times greater than in-process function calls.

• Lock contention can occur, limiting scalability. This is
where many transactions require the same lock. Even if
locks are held for a very short time, it creates a bottleneck
that’s analogous to a multi-lane highway feeding into a sin-
gle lane bridge.

• Long term blocking occurs when a transaction holds a lock
for an extended period, blocking all other transactions that
need access to that resource. For example, this could arise if
a long term transaction is held while a user edits information
in a dialog window. This has the advantage of isolation for
users, but also can prevent concurrent data entry - perhaps
in unexpected ways (as can happen with page level locking)
or if transactions access common data structures.

In practice transactions may need to be executed server sideto
avoid exposure to network latency. This imposes constraints on
client side transaction logic.

Fortunately, the Relational Model allows for set based process-
ing: A client can issue a query (e.g. in SQL) and the set based
query evaluation is performed entirely on the server, greatly re-
ducing the number of synchronous messages between client and
server.

2.1 Distributed transactions

A distributed transaction operates on multiple physicallysepa-
rated databases. The challenge is to develop anAtomic Com-
mit (AC) protocol where all databases either agree to commit the
changes or not, even in the presence of failures such as lost mes-
sages or network partitions.

1

In theTwo Phased Commit(2PC) protocol each participating
database is asked by a coordinator to “prepare to commit”. A
participant can either vote “yes” to indicate readiness to com-
mit or “no” to unilaterally abort. Before voting yes it must flush
log records to secondary storage. In the second phase the coor-
dinator only commits the transaction if all sites voted yes.The
coordinator sends either a “commit” or “abort” message to each
participant and the participants responds with an “ack” [2].

If a site fails and needs to perform a recovery, any locks that
were held as part of a prepared distributed transaction needto
remain locked until it is known whether the transaction is tobe
committed or aborted.

A blocking protocolis where a site may be forced to block in-
definitely while it waits for another site to recover and become
accessible again. 2PC is especially vulnerable to failure of the
coordinator. When that occurs, participants must block indefi-
nitely until it recovers [3]. A major problem is that any locks
acquired by the transaction cannot be released. Since 2PC isnot
resilient to a random single site failure, aThree phase commit
(3PC) protocol was proposed. However 3PC is more costly and
ultimately still subject to blocking under certain failurecondi-
tions, and therefore not commonly implemented.

It turns out that no protocol exists that is safe in the presence
of network partitions when messages are lost [3]. This is rather
discouraging.

Since distributed transactions involve synchronous messaging
on potentially high latency and unreliable networks, it is not sur-
prising to see comments like the following:

It comes as a shock to many, but distributed transac-
tions are the bane of high performance and high avail-
ability [6]

...Yes they’re evil. But are they a necessary evil – that’s
the real question. ...I believe they are indeed the worst
sort: necessary. We’re all dooooooomed...... [7]

...a number of companies haven’t a clue how much
danger they are in. They trust to 2-phase transactions
and independent backups. They spend huge sums of
money on HA paired servers to try and make the phys-
ical system failure-proof. At the end of the day, how-
ever, it is impossible. Nature finds a way to make
your life miserable, and all because of these horrid dis-
tributed transactions. [7]

2.1.1 Single Source of Truth

Conventional database systems emphasise the concept of aSin-
gle Source of Truth(SSOT) for every data element. The most
straightforward way to achieve this is to store every data element
exactly once. This aligns well with conventional client-server ar-
chitectures - i.e. where the SSOT is enforced by storing all data
on asingleserver.

2.1.2 Distributed transactions on replicated data

A distributed database system can replicate data and yet comply
with the SSOT principle by applying updates atomically to all
copies using distributed transactions. One advantage of replica-
tion is for load balancing read only queries across the available
copies. The isolation property of transactions implies that other
transactions cannot see divergence in the replicated data.

However this approach is impractical and mostly only of aca-
demic interest. The problem is poor performance. A non-
distributed system able to achieve tens of thousands of short up-
date transactions per second will slow to perhaps hundreds of

transactions per second when using replication and distributed
transactions [5].

2.1.3 Commitment ordering

Fortunately S-S2PL together with Atomic Commit guarantees
global serializability in a distributed system, without the need to
share concurrency control information between databases apart
from that needed for the AC protocol.

In [4] a new concept calledCommitment Orderingis intro-
duced which generalises this result, providing alternative ways
to ensure global serializability. This may provide dead-lock free
executions, although the price to pay is cascading aborts. Unfor-
tunately cascading aborts is a very significant problem.

2.1.4 CAP theorem

The CAP theorem [8] states that in general it is not possible to
have all three of the following at the same time in a shared data
system:

1. Consistency;

2. Availability; and

3. Partition tolerance.

If there are no partitions then consistency and availability is
easy to achieve - such as in a centralised database. Also systems
that run on LANs often assume there will be no network parti-
tions.

Distributed databases may make minority partitions unavail-
able in order to achieve consistency and partition tolerance.
Atomic Commit protocols such as 2PC make some nodes un-
available (i.e. block indefinitely) when the network partitions. A
message forwarding proxy to a centralised database inherits the
consistency and availability of the central server, but theproxy
necessarily becomes unavailable when connectivity to its central
server is lost.

In [9], consistency is formalised asatomic consistency. A
distributed object must behave as though all operations areper-
formed in some total order and each operation looks as thoughit
is completed in a single instant.

OT rejects atomic consistency and instead only aims to achieve
consistency at quiescence. Since consistency caneventuallybe
achieved, OT is able to achieve both availability and partition tol-
erance (which are conventionally incompatible). Therefore OT
can be seen as a way to sidestep the very discouraging limitation
inherent in the CAP theorem.

2.2 Conflicts

The isolation requirement on transactions is associated with their
serialisability. 2PL implies conflict serialisability which implies
view serialisability. Here, a conflict relates to non-commutative
access such as two writes or a read and a write to thesame vari-
able, not to higher level semantic dependencies that may hold
across variables. Therefore it is misleading to say that 2PLelimi-
nates all manner of conflicts in multi-user data entry applications.

In this article the termssyntactic conflictand semantic con-
flict by definition refer respectively to low and high level con-
flicts depending on whether they can be avoided automatically
by the database system (typically using 2PL as well as integrity
constraint checking which can cause a transaction to be aborted).
Therefore, we say that the database system only prevents syntac-
tic conflicts.

2

Syntax relates to formalised integrity constraints. A database
schema (i.e. datatype definition) imposes constraints by specify-
ing the possible values that may be recorded in the database.By
contrast semantic constraints are not enforced, perhaps because
they are too difficult to formalise.

Consider a centralised database recording source code files
edited by a group of programmers using client applications over
a network. Let the files be locked pessimistically with 2PL. We
will use this example to compare short lived and long lived trans-
actions.

2.2.1 Short lived transactions

With short lived transactions associated with individual,fine-
grained edits the users will be able to see each other’s typing in
real-time (subject to network latency). As a result of brieflock-
ing of files, characters inserted into a file cannot be lost because
the system avoids dirty reads and lost updates.

This has the advantage of supporting concurrent and highly
interactive work. It is well suited for users collaboratingon the
same task. However, users working on more independent tasks
requireisolationso they can go through the edit-compile-run cy-
cle independently. Having another user’s edits appear can be a
serious impediment when they are irrelevant to the task at hand.

Unfortunately 2PL inevitably exposes the users to network la-
tency – even with sophisticated algorithms that cache data and
retrieve locks optimistically. For example, a user may sometimes
notice a few hundred milliseconds delay between hitting a key
on the keyboard and seeing the inserted character appear on the
screen. Research has shown that a latency exceeding about 150
msec negatively impacts productivity because users instinctively
slow down, perhaps because they are less sure that they have
typed correctly [11].

When multiple users edit the same file there can be problems
because the displayed text or their caret position jumps around.
On the positive side, semantic conflicts tend to be reduced be-
cause users become aware immediately of what other users are
doing, allowing rapid decision making that avoids incompatible
or wasted work. However, that may not happen if another user’s
edits don’t happen to be visible on the screen, such as when they
edit a different file – i.e. the introduction of higher level semantic
conflicts goes unnoticed. For example, two users may inadver-
tently add a function with the identical name in different files,
causing an error that is only detected later by the linker.

With short lived transactions the system cannot enforce strong
integrity constraints. That isn’t necessarily a problem – evidently
programmers work quite well with editors that happily persist
source code files that don’t compile. Instead, integrity constraints
can be checkedmanuallywhen a user compiles the code or runs
a unit test and uses the reported errors to make ongoing improve-
ments and corrections.

2.2.2 Long lived transactions

Consider that the database enforces complex integrity constraints
(e.g. source code must compile, link and perhaps even pass some
user-defined unit tests) when each transaction commits. These
constraints cannot be applied during a transaction becausethe
user wouldn’t be able to insert or delete individual characters
with a text editor.

Long lived transactions are necessary to move the data atomi-
cally from one valid state to the next. Transactions are veryex-
pensive to commit because of the high validation cost, but that
may not be a problem because a transaction is typically associ-
ated with a high level task and the rate at which these tasks are
performed is very low (e.g. only a few per day).

Integrity checking can be made very convenient by highlight-
ing parts of the source code that contain errors, similarly to word
processing software that highlights spelling and grammar errors
within the editor. This idea is appropriate to many other domains
such a electronic circuit design, CAD etc.

When a transaction fails to meet integrity constraints, the con-
ventional approach is to abort it and roll back all changes. That
is hardly appropriate if a user has spend hours or days on a com-
plex task. Aborting a transaction also seems inappropriatein a
dead-lock scenario - say when two users have each locked a file
needed by the other user to complete their task.

Long lived transactions often prevent concurrent work - i.e. a
user may be blocked from editing a file because it has been locked
for hours or days by another user. On the upside this reduces the
risk of conflicts – however it only does so to the extent that it
prevents concurrency in the first place. Even so semantic con-
flicts are still possible despite locking, when users changediffer-
entfiles where there are semantic dependencies between them. In
[10] it is pointed out that locking is restrictive and often becomes
a roadblock for users:

• Locking may cause administrative problems: A user may
lock a file and then forget about it or go on vacation, pre-
venting other users from doing work. An administrator is
needed to release the lock.

• Locking can cause unnecessary serialisation: E.g. lockinga
single text file serialises all edits to that file, even thoughthe
edits may be quite independent.

• Locking can give users a false sense of security, because
they may assume that locking ensures they can make
changes without introducing incompatibilities, and there-
fore don’t communicate with each other adequately.

Very strong integrity checking can detect many more conflicts.
However, it typically does so by accessing a very large proportion
of the data in the database. For example the validation of a trans-
action on source code may require access toall source code files
in a project to verify the linking step. The effect is that a trans-
action cannot commit until it has (read) locked every singlefile!
This makes dead-lock almost inevitable because when a transac-
tion is about to commit it will require read access to all filesthat
are currently accessed with exclusive locks by other users.The
only solution is to disallow concurrent development completely.

2.3 Locking versus merging

As a result of the problems with 2PL, most developers prefer a
form of optimistic concurrency control to manage their source
code – using automated merging to deal with concurrent editing
of the same text file. For example, Subversion is a typicalRe-
vision Control Systemthat promotes edit and merge workflows.
Many RCS products (e.g. Bazaar, CVS, Git and Mercurial) don’t
support exclusive locks at all.

The main reason for supporting locking is to deal withbinary
files (e.g. images or videos) because adequate merge tools don’t
exist.

An interesting question is whether other forms of data (besides
text files) would also benefit from edit and merge workflows. For
example it is expected this would be valuable for CAD teams.
However a software tool supporting merge on CAD models is
much more challenging that the case of simple text files.

3

3 Data replication in CEDA

CEDA allows for decentralised data management within a peer-
to-peer network. Clients or peers on the network store a com-
pletely independent copy of the data. The data isreplicated, and
there is no need for a centralised server.

3.1 Operations

Data replication depends on the ability to synchronise the repli-
cated data asynchronously by sending database changes (called
deltas oroperations) in the background. Operations can be seri-
alised as a stream of bytes - which means they can persist in the
database or be sent over the wire.

In principle operations can be calculated as a difference be-
tween two database states. However that is inefficient compared
to a system that generates the operations directly from the user
edits. The disadvantage is that it is more difficult to convert exist-
ing single user applications to use CEDA because it is necessary
to hook into the edit functions rather than simply the loading/sav-
ing of the data.

Individual edits to the data are represented as distinct opera-
tions. For example, as a user types on a keyboard, every char-
acter inserted or deleted is represented as a distinct operation.
Similarly as a user manipulates an object with the mouse, every
mouse move event may generate a distinct assignment operation.
This might generate 50 operations per second.

3.2 Operational transformation

Operations are sent asynchronously between peers on the net-
work in order to synchronise the replicated databases. Operations
are transformed as required so they may be applied in different
orders at different sites whilst ensuring the distributed databases
reach the same final state and the original intentions of the oper-
ations are preserved.

Keys features include:

• Avoids pessimistic locking of data and the complexity and
pitfalls with distributed locking, dead-lock detection, and
multiphase commit protocols.

• True peer-peer based replication

• Synchronisation of peers only sends relevant deltas and is
extremely fast and efficient.

• Local editing operations are always applied immediately
without being delayed or blocked - even in the presence of
network failure.

• Robust to network outages, dropouts or changes to network
topology.

• Editing of complex data models off line and merging
changes afterwards.

• Allows efficient tagging, branching and merging (i.e. con-
figuration management) of the entire database.

Developers that have used configuration management tools
such as CVS or Subversion are familiar with the idea of auto-
mated merging of concurrent edits to text files. OT is very sim-
ilar in nature except that it is based on a more robust mathemat-
ical approach. For example it is not line based and it can cor-
rectly merge edits on a single line of text. Furthermore, unlike
Subversion, CEDA utilises OT for merging complex data models
encoded in binary form.

There are three requirements that must be met by the system
using OT [13]:

1. All sites must converge at quiescence - meaning that when
all operations have been applied to all sites, the replicated
data will have reached the same final state.

2. Operations should preserve their original intentions

3. Causal ordering relationships between operations must be
respected.

The intuition behind OT is comparatively easy. The imple-
mentation however is not! For example, in the literature there is
a defined total ordering on characters in a shared text document
called theeffects relation[14]. This makes it straightforward to
see how all sites can in principle converge at quiescence. Ac-
tually implementing an efficient, correct solution is not soeasy.
There are subtle problems that only become apparent when there
are three sites or more.

3.3 Interactive collaboration

Real-time, interactive collaboration occurs when a group of users
all edit some replicated data and the locally generated operations
are sent to peers over the network so that users see each other’s
edits in real-time. For example, a user may see characters appear
in a paragraph as they are being typed by another user.

CEDA is efficient enough to allow hundreds of users to inter-
actively collaborate on the same data, sending, receiving,trans-
forming and applying many thousands of operations per second.
Operations arestreamedsuch that throughput is constrained by
network bandwidth, not latency.

Local operations are applied immediately when they are gen-
erated – i.e. always independently of network latency. Thisguar-
antees that the application is always as responsive as a single user
application. Therefore the problem of delays affecting data entry
(discussed in section 2.2.1) never occurs in CEDA. This is proba-
bly immaterial on a reliable LAN, but for fine grained interactive
collaboration amongst users on opposite sides of the globe it is
a significant improvement over any locking scheme that exposes
the user to network latency.

If the network fails then all users are able to continue working.
The only thing a user notices is that edits by other users appear to
stop. Later when the connectivity is reestablished mergingwill
be performed efficiently and reliably. The only potential issue is
the risk of semantically incompatible or wasted work.

As stated in section 2.2.1, interactive collaboration is only ap-
propriate when users work closely together on the same task.
Therefore this mode of real-time data synchronisation isoptional
in CEDA. In fact it is expected that most of the time users will
require isolation as they work on distinct tasks.

3.4 Configuration Management

CEDA supports Configuration Management in a similar way to
RCS tools like Subversion. A repository (either local or remote)
records any number of branches of the data. A user typically edits
a localworking copyin isolation and chooses when to perform an
updatefrom a repository which will merge changes into the local
working copy. Alternatively the user cancommitchanges to a
repository. Distributed repositories are supported such as in Git
or Mercurial.

CEDA is able to enforce linearity of a given branch even
though users are able to work on tasks in isolation. This involves
separately supporting updates and check-ins, and not allowing a
check-in to be performed without a prior update.

This also provides an effect similar to transactions. If users
only check-in changes that meet strong integrity constraints then
the check-ins can be seen as moving the database atomically from

4

one valid state to the next. This makes this comparable to long
lived transactions as described in section 2.2.2.

Distinguishing local working copies and repositories, allows
CEDA to get both the benefits of short lived transactions (on a
working copy) and long lived transactions (on a repository).

3.5 Changes to network topology

CEDA allows the computers to reconnect in an entirely new
topology and operations are exchanged as required so they al-
waysconverge at quiescence.

3.6 Site identifiers to break symmetry

It is assumed that each site is uniquely identified by asite iden-
tifier and there is a system wide total ordering on the site identi-
fiers. This total ordering is used to allow all sites to agree on how
to merge concurrent edits whenever there is an ambiguity dueto
symmetry. In CEDA site identifiers are 128 bit guids.

3.7 Merge using OT

Under OT a merge of concurrent operationsalways succeedsand
the result is always well defined. Therefore a merge can always
be performed automatically without human intervention.

Syntactically the result of a merge is straightforward and
doesn’t do anything nasty like put the database into a corrupt
state, or somehow lose or mess up large amounts of work from
one or more users. It is perhaps worth pointing this out to users
that are skeptical of automated merging (which for example is
quite common with developers that have never used RCS tools
before)

3.7.1 Values and variables

A value is abstract and mathematically defined, eternal, im-
mutable and decoupled from the computational machine (i.e.
doesn’t exist in time or space). An example of a value is the in-
teger 5. It is immutable meaning that it can’t be modified - e.g. it
makes no sense to say that the value 5 can be changed to become
the value 6. A value is eternal meaning that there is no point in
time where it sprang into existence or later ceases to exist.

A datatypeis a set of values plus a set of read only operators on
those values. Like values, a datatype is abstract and mathemati-
cally defined, eternal and immutable and doesn’t exist in time or
space. An example is the set of integers with the arithmetic and
comparison operators.

A variable is a holder for the appearance of an encoded value
and is regarded as existing in time and space as part of a compu-
tational machine.

An update operatorcan be applied to a variable to modify its
value. Examples are direct assignment, insert and delete opera-
tors on string variables, and increment and decrement operators
on integer variables.

A variable has avtype which specifies both the variable’s
datatype (which defines the set of possible values which the vari-
able can hold) and the available update operators on the variable.

Different vtypes may exist for the one datatype. For example
for the signed 32 bit integer datatype, one vtype may supportas-
signment and another may only support increment and decrement
operators. This influences the way merging is performed under
OT, since OT is concerned with intention preservation of update
operators.

The application programmer specifies vtypes when defining
a database schema in CEDA. It is important to understand the

various repercussions when alternative vtypes are available for
the same datatype.

3.7.2 Information content

The amount of information in a value of a given datatype can be
quantified using entropy which is the logarithm of the numberof
possible states, and this relates to the amount of storage space
required to encode the value. This makes it meaningful to speak
informally about low versus high entropy values. For example it
requires a lot less space to record a 32 bit integer than a typical
CAD drawing or text document.

Input devices like the mouse and keyboard can only generate
information at a limited rate. It is assumed that individualkey
presses and mouse events can be used to generate small opera-
tions, and it takes time to accumulate enough operations to spec-
ify a value with high entropy. This should be kept in mind when
considering the appropriate vtypes and hence update operators
for a given datatype.

3.7.3 Assignment

Every datatype has an associated vtype that supports directas-
signment to the variable. Obviously concurrent assignments of
different values to a variable always conflict and there is nothing
that can be done about that. i.e. it isn’t possible to preserve the
intention under OT.

The situation isn’t as bad as it first appears. Assignment by its
very nature is lossy and so it’s actually reasonable for merging
to be lossy as well. Assignment only tends to be used for simple
datatypes that are edited using GUI controls that generate assign-
ment operations with minimal effort from the user. For example,
in the CEDA jigsaw demo application, simply moving a jigsaw
piece can be made to generate an assignment operation.

By contrast it wouldn’t normally be reasonable to use assign-
ment on a datatype that records a value with high entropy, that
is very expensive to edit (like a CAD drawing or a text docu-
ment). Under merging this would arbitrarily keep the edits from
one user and drop everyone else’s contribution. In any case,as
noted in section 3.7.2, input devices like the mouse and keyboard
cannot generate high entropy assignment operations in the first
place.

As a result of symmetry the system needs to pick one of the
assignments on a rather adhoc basis. The total ordering on site
identifiers is used to pick a unique “winner” amongst all com-
peting sites. This winning assignment dominates all concurrent
and causally preceding assignments. The total ordering on the
site identifiers can be seen as an imposed ordering on the concur-
rent assignments, where all the “loser” assignments are deemed
to have been applied before the “winner” assignment.

The lossy characteristic of assignment operations is an impor-
tant consideration in their use. Curiously there are situations
where it is exactly what is needed! The CEDA jigsaw demo
application provides a good example of where assignment op-
erations work well in practice.

3.7.4 vtypes involving subvariables

An accessor operatoron a variable returns a reference to another
variable called asubvariable. Updates on the subvariable indi-
rectly cause updates on the containing variable.

A database is essentially a single variable. Accessor operators
allow a database to be regarded as being composed from subvari-
ables. Accessor operators often compose, allowing one to drill
down through nested subvariables.

5

In each of the following four cases, there is a sense in which
values of that datatype consist of a fixed set of elements thatare
uniquely identified (i.e. indexed) with immutable keys in some
fashion:

1. Tuples: A tuple type is parameterised by a set of attributes
where an attribute has a name and a type. The names are
unique. A tuple variable records the values of all the at-
tributes.

2. Fixed sized arrays: An array type is parameterised by the
size of the array and the type shared by all the elements.
Elements are indexed by integer position.

3. Dynamic arrays: A dynamic array is like a fixed size array
except that it can grow arbitrarily large. It is formalised as
an infinite mapping from the natural numbers to the element
values. The array’s type is parameterised by the type shared
by all the elements and an initial element value. When an
array is created, all the element values have the initial el-
ement value. The implementation only physically stores a
finite prefix of the array, assuming that all elements in the
infinite suffix have the initial value. The stored prefix can
grow or shrink over time.

4. Maps: A map associates every key value (of the given key
type) to an element value (of a given element type). As for
dynamic arrays, the map type is also parameterised by an
initial element value, and an implementation avoids record-
ing elements that have this special value. This allows a map
to be used when the cardinality of the key type is very large
or infinite. Note that logically there is no concept of insert-
ing or deleting elements even though physically the imple-
mentation will do that. The CEDA implementation persists
a map using a B+Tree.

For each of these four cases, there are two possible vtypes that
are available:

1. One supports (and only supports) direct assignment to the
entire variable as described in section 3.7.3. The elements
do not represent subvariables and it is only necessary to
specify the types of the elements as datatypes (not vtypes
– because the elements are not independently updateable as
variables).

2. The other doesn’t support any update operators that directly
modify the variable including direct assignment. Also, there
are no operators for insertion and deletion of elements. In-
stead all updates can only be performed indirectly by us-
ing an accessor operator parameterised by an immutable key
value to retrieve a reference to anelementas a subvariable.
The vtype of the tuple, array or map is parameterised in the
vtype(s) of its elements. This in turn affects what update op-
erators are available on the elements when they are treated
as variables. It is assumed that preserving the intention of
the operation means we preserve the identity of the element
that is updated. Therefore the key value used in the acces-
sor operator to index the element doesn’t require transfor-
mation under OT. It is also assumed that the subvariables
are independent so therefore merging is performed on each
subvariable independently.

3.7.5 Vectors

The vector and array vtypes represent the same underlying
datatype – a list of element values indexed by ordinal position.
However as vtypes the update operations are different. A vector

can grow and shrink using insert and delete operations whereas
the size of an array is fixed. The elements of a vector are im-
mutable - i.e. they cannot be modified whereas the elements of
an array are treated like subvariables with their own updateop-
erators. The vector vtype is well suited to recording text (where
the elements are characters) that can be edited by multiple users
and supports merging of insertion and deletion operations.

In the case of an array, an element is forever identified by a
fixed index position. By contrast, in a vector an element is con-
sidered to have an index position which may change over time.
A given element is inserted by a particular user at some pointin
time and may shift left or right as other elements are deletedor
inserted to the left of its current position. Eventually theelement
may be deleted (and once deleted that element is gone forever).

Consider the following definitions ofintention of insert and
delete operations:

• Insert: The inserted string must appear after the elements on
the left and before the elements on the right of the insertion
position.

• Delete: The elements to be deleted must not appear in the
result.

Insertions don’t conflict with other insertions – i.e. it is always
possible to preserve the original intentions of every insertion for
every user. It is easy to simply take the union of all the insertions
in the result – for each insertion preserving both the stringto be
inserted as well as the insertion position relative to the elements
that existed at the time the operation was originally generated.

The only ambiguity exists with insertions at identical posi-
tions. For example consider a string variable that is initially
empty and one site inserts “x”, while another site concurrently
inserts “y” at the same position. At quiescence should the string
variable become “xy” or else “yx”? CEDA makes use of totally
ordered site identifiers in order to break this symmetry and ensure
all sites agree on the order of the insertions.

Elements inserted by one user cannot be concurrently deleted
by a different user (they can’t delete what they haven’t got).
Therefore a concurrent delete never interferes with the preser-
vation of an insert, and vice versa.

Finally deletes don’t conflict with other deletes. Deletes are
preserved by deleting theunion of all the deletes in the merge
result. An element can be concurrently deleted any number of
times – in the merge result it is deleted only once.

So both these intentions can always be preserved under merg-
ing. In that sense operations on vectorsnever conflict(where
syntactically the vector is modeled as just an ordered sequence
of elements with no higher level semantics).

The merge result can be expressed asthe union of all the in-
serted elements minus the union of all the deleted elements. This
is simple and intuitive for users to understand, which meansthey
can easily predict the result of a merge and there will be no sur-
prises.

3.7.6 Sets

Consider a vtype for a set in which the elements are immutable.
Therefore the only way the set can change over time is to insert
new elements and remove existing elements.

We use the following definitions ofintention of insert and
delete operations:

• Insert: The element to be inserted must appear in the result.

• Delete: The element to be deleted must not appear in the
result.

6

Note that inserts never conflict with inserts, and deletes never
conflict with deletes. Inserts and deletes only conflict on the same
elements. In CEDA we resolve this conflict by giving precedence
to the insertion. i.e. insertions dominate concurrent deletes.

3.7.7 Bags

A bag is like a set except that the multiplicity of each element
value is recorded. The vtype for a bag offered in CEDA considers
the elements to be immutable and the bag only changes though
delete and insert operations. The following apply to elements of
a given key value:

• In the face of concurrent edits we favour inserts over deletes

• Concurrent inserts are assumed to have inserted distinct el-
ements. For example if one site inserts 3 elements and an-
other site inserts 2 elements then after the merge we assume
5 elements were inserted.

• Concurrent deletes are assumed to have deleted as many
elements in common as possible. For example if one site
deletes 3 elements and another site concurrently deletes 2
elements then under merge we assume 3 elements were
deleted.

• A delete can only remove an element that was inserted by
an operation that causally preceded the delete. i.e. a delete
can never be thought of deleting an element inserted by a
concurrent insert.

3.8 Reject SSOT

A crucial difference with conventional systems is that CEDA
doesn’t subscribe to to the usual formulation of the SSOT princi-
ple. Putting it another way, every peer is regarded at all times as
an independent and more to the point avalid version of the data.
This reflects reality much more closely. If data is stored sepa-
rately in space, why pretend it’s the same data, and why pretend
it can be updated simultaneously? The latter conflicts with Ein-
stein’s Theory of Relativity where no information can go faster
than the speed of light. A distributed transaction tries to make
all observers agree on the simultaneity of events distributed in
space, which is like the old fashioned Newtonian view of global
consistency and global time.

Rejecting SSOT allows each peer to continue operating no
matter how badly the network becomes partitioned. i.e. avail-
ability and partition tolerance are both maximised. Peers are al-
lowed to continue working because we don’t impose an artificial
constraint (SSOT) on the system.

OT allows users to make concurrent edits that are automat-
ically merged without syntactic conflicts (but like locking, OT
cannot hope to prevent semantic conflicts). This is achievedby
allowing operations to be performed in difference orders atdif-
ferent sites, and yet crucially, all sites converge to the same final
state. This agreed final state represents a kind of non-localised
SSOT (admittedly an oxymoron)! Interestingly this has an ana-
logue in Relativity where the absolute ordering of space-time
events is only partial, being relative to the observer for events
that are outside each other’s future or past light cones, andyet
there is an underlying, shared reality (spacetime).

A vector timecan be used to unambiguously identify any
causally valid version of the data, even though it is shared and
edited by any number of sites without any distributed Atomic
Commit protocols. One can define any SSOT one likes by sim-
ply specifying a vector time.

3.9 Reject global serialisability

Conventional distributed database systems emphasiseglobal se-
rialisability of transactions as a criterion for correctness. OT pro-
vides a very different perspective and completely rejects Global
serialisability! Instead transactions are always generated locally
in a way that only obeyslocal serialisability. Obviously a trans-
action is meaningful in the context of the local database on which
the operation was originally generated. Under OT, operations
are only propagated to sites in a way that preserves causality re-
lationships between operations. An operation is only executed
on another site in a context that includes all the operationsthat
had been performed when the operation was originally gener-
ated. This helps to ensure that the operation will be meaningful
in a different execution context when it is propagated and applied
remotely. An important criterion for OT algorithms is to preserve
the original intention of the operation. For example, if an oper-
ation deleted some characters from a string then that operation
should always delete the same characters when it is applied on
another site. The intention of an operation is by definition low
level or syntactic, and cannot account for higher level semantic
intentions because that is too difficult to formalise for a definition
of the Inclusion Transformation – which is where one operation
is transformed to an execution context that includes another con-
current operation, whilst preserving its original intention. The
aim of OT is to support the merging of concurrently performed
operations that don’t really conflict according to the intentions
of the users, even though the operations would be regarded as
conflicting in a conventional database using pessimistic locking.

3.10 Reject distributed transactions

In the CEDA implementation each site persists all operations in
its local Persistent Object Store with proper attention to atomic-
ity.

As for conventional systems, transactions are used to parenthe-
sise access to a database - particularly mutative operations. How-
ever access is always local to the database on the same machine
and therefore avoids any effects of network latency or network
partitioning. The main role of transactions is to define bound-
aries for atomicity and rather less to do with consistency, isola-
tion or durability. In CEDA they employconservative 2PL. The
data is partitioned into coarse mutually exclusivepspaces. Each
pspace has a single lock supporting exclusive write or shared read
modes. All required locks on the applicable pspaces must be
granted before a transaction begins. Locks are requested ina
consistent total order so that dead-lock is impossible.

3.11 Applications where OT is inappropriate

OT is inappropriate where the data needs to be centralised be-
cause it maps very directly back to something that physically ex-
ists in the real world. In these case the SSOT principle is required
for correctness.

For example, an airplane reservation system should be dealt
with centrally and use pessimistic locking, because there is a real
airplane with real seats on it, and double booking isn’t a good
idea. Replicated data synchronised using optimistic concurrency
control allows for divergence, and hence allows for double book-
ing of seats.

In the case of financial systems, when an ATM provides a cash
withdrawal there is a transaction involving real money and some-
where the withdrawal is made on an account in a database. In a
sense the account balance recorded in a physical database repre-
sents real money. Therefore transaction atomicity with respect to

7

the real world is required. This explains the need for transaction
durability (the ’D’ of ACID).

Financial systems also seem to need pessimistic locking. How-
ever It can be argued that it’s possible for a distributed system to
support transfer of money between bank accounts without any
need for distributed transactions.

3.12 OT and integrity constraints

The mathematics of OT is subtle enough that numerous incorrect
algorithms have appeared in the literature for the simple case of
edits on text ([14] discusses some of these). Fortunately OTsolu-
tions exist on a wide enough set of datatypes to make it practical
in general.

OT imposes significant restrictions on what integrity con-
straints can be directly enforced on the editable data. In order
to support strong integrity constraints it is generally necessary to
impose themindirectly. Therefore the database only enforces
comparatively simple syntactic validation on the editabledata
and the stronger integrity constraints that are incompatible with
OT are treated as semantic constraints. These can be pinpointed
or highlighted in a data entry application - either by havingthe
user manually run a validation check or else having the validation
check run continuously – say as a background task. This allows
users to correct problems over time (and normally the elimination
of all semantic errors would be a high priority).

This provides an elegant methodology to deal with merge con-
flicts. As we have seen, under OT, a merge always succeeds with-
out syntactic conflicts. However, a merge could easily causea
semantic conflict. Such merge conflicts could be automatically
pinpointed, highlighted then corrected by a user with a suitable
software application. It is even possible for a group of users to
take part in an interactive session aimed at fixing the merge con-
flicts.

There are two variations on this theme: Either the validated
version of the data only becomes available once all errors and
omissions have been corrected, or else it is possible at all times
to calculatea pristine version of the data that obeys the stronger
constraints, typically subtracting away the parts of the data that
break integrity constraints. This appears straightforward in the
Relational Model. For example,

• meet a foreign key constraint by throwing away records with
a foreign key that cannot be resolved.

• meet a no-null constraint by throwing away records that
have a null

• meet a uniqueness constraint by throwing away duplicates

An interesting example of using a semantic model on top of
the syntactic one appears in section 3.13.

3.13 Jigsaw example

Since the meaning of OT can appear rather mysterious it is worth
studying some specific examples to find out what it actually
means in practice. Consider a CEDA jigsaw application using
the following schema:

$tuple TPoint2d
{

int32 X;
int32 Y;

};

$tuple TJigsawPiece
{

TPoint2d Position;

bool JoinedOnRight;
bool JoinedOnBottom;

};

$tuple TJigsaw
{

int32 NumRows;
int32 NumCols;
TJigsawPiece Pieces[];

};
};

The completed jigsaw is comprised of pieces arranged in a two
dimensional grid with the given number of rows and columns.
The jigsaw piece at row r and column c has an indexi =

r*NumCols + c. Information about the pieces is recorded in a
dynamic array, indexed by i. Each piece records its (x,y) po-
sition and two boolean flags for whether it has been joined to
the piece immediately on its right or below as they appear in
the completed jigsaw. Initially each piece hasJoinedOnRight

= JoinedOnBottom = false allowing all the pieces to have an
independent (x,y) position on the screen.

The jigsaw application allows many users to concurrently
move the pieces around. Occasionally two people may drag the
same piece with the mouse in different directions, and everyone
sees it rapidly flicker between the two alternative positions as in-
coming operations to a given computer successively reassign the
(x,y) location. This is an example of a “conflict” that is visually
obvious and its resolution simply involves one person giving up
before the other.

The surprising feature supported by OT is that some people can
work on the jigsaw off-line and it is always possible to silently
merge in their work. At no time do dialogs appear asking users
to resolve conflicts. This is achieved despite a model that keeps
track of what pieces have been snapped together, and in fact the
OT is applied in such a way that pieces that had been snapped
together can never come apart after merging.

Although OT sometimes needs to make arbitrary decisions in
order to resolve ambiguities because of symmetry, it is possi-
ble at a higher level tointerpret the shared “syntactic” data in
such a way that some activities (like snapping pieces together)
take precedence over others (like moving pieces around). The
trick is to realise that integrity constraints typically reduce the
degrees of freedom in the model, and therefore there is an op-
portunity to resolve conflicts in favourable ways. In the case of
the jigsaw example, the syntactic model records the (x,y) ofev-
ery piece, as well as information about which pieces have been
snapped together. The integrity constraint (which can be re-
garded as applicable in a “semantic model” of the jigsaw) means
that some of the recorded (x,y) positions of the pieces need to
be ignored! In a way, as the jigsaw is being put together the
number of degrees of freedom in the semantic model is steadily
decreasing. The OT itself only cares about the syntactic model
which is directly expressed in the schema. In this case the high
level semantic is expressed in the implementation of methods like
GetPiecePosition(int i), which returns the logical position of
the ith jigsaw piece. The implementation simply offsets from the
physical (x,y) of the top left most piece in any given set of con-
nected pieces as a basis for calculating a logical position compat-
ible with the integrity constraints.

Note that the semantic view of the data is not ncessarily read
only. E.g. it is possible to implement a semantic version of
SetJigsawPiecePosition(i,pos) that ensures that all pieces in the
group containing piece i move together as expected. This means
it syntactically needs to assign the position of the top leftpiece
in the group!

OO classes that decorate an underlying syntactic model are
able to express a higher level model that is expressed in terms of

8

the lower level syntactic model.
In many respects the jigsaw example seems an unlikely can-

didate for OT, even though it works well in practice! The jig-
saw model contains assignable variables that are implicitly lossy
because they can only record their last assigned value. Under
merging the system is forced to disambiguate by ensuring allsites
agree on a unique “winner”. The saving grace is that the cost of
manual conflict resolution isn’t commensurate with the original
effort of assigning the value. Therefore users seem very happy to
put up with lossy merges.

Dialogs reporting a merge conflict would be undesirable. With
a jigsaw containing 500 pieces, it’s simply not feasible to expect
a user to resolve each and every merge conflict manually. It only
seems reasonable to manually resolve conflicts on entered data
that involved a lot of work in the first place. Moving a jigsaw
piece takes too little effort to justify manually promptingthe user
to disambiguate a merge conflict.

In many examples (but not in the case of the jigsaw), data en-
try often involves creation ofnew data. For example, when a user
works on a text document, most of the effort involves inserting
new text. Therefore merging off-line work doesn’t tend to dis-
card edits - basically because the shared data can always grow to
contain everyone’s contribution.

3.14 Semantic conflicts

As far as actually locking out users from off-line work, the most
important criterion is the level of semantic incompatibility (or
else overlap) in the high level tasks, and the system typically can-
not formalise that. It can’t even necessarily determine whether
substantial conflict exists during the merge! Consider the fol-
lowing users that are all working off-line doing some work ona
shared text document:

User Task
1 Restructure the chapters
2 Write the introduction
3 Write the conclusions
4 Write the introduction
5 Correct the spelling
6 Correct the grammar and diction
7 Insert figures

Under OT, after merging we end up with a reasonably faithful
union of all their efforts. The biggest problem is that therewill
be two introductions. The problem is not so much with the in-
tegrity of the document - because it is easy to delete one of the
introductions afterwards. Rather it is in the wasted effort!

It seems that in this case, locking in any shape or form will add
nothing of value, and only interfere with the ability for theusers
to work in isolation. Furthermore, a locking protocol is unable to
detect the semantic overlap in the high level tasks between users
2 and 4. In fact these two tasks are probably the least likely to
create syntactic conflicts that could be detected by locking!

Most conflicts between users seem to occur at a semantic level
that is inaccessible to the system. In a way locking implicitly ac-
counts for that (because if the system was able to understandthe
presence of a conflict it would probably be clever enough to take
corrective action as well). Instead locking simply forces users to
take turns. Unfortunately there are many semantic conflictsthat
can go undetected, unless locking is at a very coarse level, but
that comes at a heavy price - lack of concurrency.

A premise of CEDA is that in practice it is more important to
detect integrity constraint violations than conflicts. To the ex-
tent that the presence of such violations can becalculatedwe
have a more robust way of finding and isolating problems with
the entered data. For example, in a database supporting software

development, an enormous amount of validation is performedby
the compiler. In addition good developers write extensive auto-
mated unit tests that make it very hard for bugs to go undetected
in the formal releases.

References

[1] Wikipedia, Concurrency Control. http://en.

wikipedia.org/wiki/Concurrency_control.

[2] J.N. Gray,Notes on Database Operating Systems, Operating
Systems: An Advanced Course, Lecture Notes in Computer
Science, Vol 60, pages 393–481. Springer-Verlag, Berlin,
1978.

[3] D. Skeen, M. Stonebraker,A Formal Model of Crash Recov-
ery in a Distributed System, IEEE Transactions on Software
Engineering, Vol 9, Issue 3, May 1983, pages 219-228.

[4] Yoav Raz,The Principle of Commitment Ordering, or Guar-
anteeing Serializability in a Heterogeneous Environment
of Multiple Autonomous Resource Managers Using Atomic
Commitment, Proceedings of the Eighteenth International
Conference on Very Large Data Bases (VLDB), pp. 292-312,
Vancouver, Canada, August 1992.

[5] Kenneth P. Birman,Reliable distributed systems: technolo-
gies, Web services, and applications, 2005, ISBN: 978-0-
387-21509-9.

[6] Dan Pritchett,2PC or not 2PC, Wherefore Art Thou XA?,
December 2006, http://www.addsimplicity.com/
adding_simplicity_an_engi/2006/12/2pc_or_

not_2pc_.html

[7] Distributed Transactions Are Evil, http://c2.com/cgi/
wiki?DistributedTransactionsAreEvil.

[8] Eric Brewer,Towards Robust Distributed Systems, Keynote
speech, ACM Symposium on the Principles of Distributed
Computing, 2000 July.

[9] Seth Gilbert, Nancy Lynch,Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web ser-
vices, ACM SIGACT News archive, Volume 33, Issue 2
(June 2002), pages 51–59.

[10] Ben Collins-Sussman, C. Michael Pilato, and Brian W. Fitz-
patrick, Version control with Subversion, O’Reilly Media,
ISBN-13: 978-0596004484, June 2004.

[11] James R. Dabrowski, Ethan V. Munson,Is 100 Milliseconds
Too Fast?, Conference on Human Factors in Computing Sys-
tems, ISBN:1-58113-340-5, pages: 317–318, 2001.

[12] Wikipedia, Operational Transformation. http:

//en.wikipedia.org/wiki/Operational_

transformation.

[13] C.Sun, X.Jia, Y.Zhang, Y.Yang, D.Chen,Achieving conver-
gence, causality preservation, and intention preservation in
real-time cooperative editing systems, ACM Transactions on
Computer-Human Interaction (TOCHI), Volume 5, Issue 1,
March 1998, Pages 63–108.

[14] Du Li and Rui Li, 2004. Preserving Operation Ef-
fects Relation in Group Editors, Proceedings of the ACM
CSCW’04 Conference on Computer-Supported Cooperative
Work, ACM Press New York, NY, USA. pp. 457–466.

9

