Consequences of Operational Transformation

David Barrett-Lennard
Cedanet Pty Ltd
Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract a risk of dead-lockscenarios (also called thdeadly embrace
where two or more transactions cannot proceed because eact

This article discusses some of the consequences of usin@Opgansaction is waiting on another transaction to completeri

tional Transformation as a basis for replications and sso1ih der to release a lock that it requires. The only way to bredk ou

sation of data in CEDA. of the dead-lock is to select a so called victim which is adbrt

meaning that all changes must be rolled back.

This strategy is also called pessimistic locking becauegstr
actions are blocked on access to a variable on the (pessimist
assumption they would violate isolation rules. This can te-c
trast to optimistic locking where a transaction is allowegbto-

1 Overview

The Operational Transformation (OT) technique [12] is € udtd-
icalinits approgch _to c.oncurrency.co'nt.rol n a.multl-ugestem. ceed to its end on the (optimistic) assumption that conflimbtv
Before comparing it with the pessimistic locking approaskdi be a problem [1]

by mc.JS'F oftoday’s DBMS pr_oducts we first review the main Char'Unfortunately there are some serious downsides to this ap-
acteristics of these conventional systems. proach:

e A centralised remote server means that clients tend to be
exposed to network latency during a client side executed
transaction. Synchronous messages over the wire have an
overhead that is easily million and may even approach a
billion times greater than in-process function calls.

2 Conventional DBMS systems

The conventional approach to multi-user data management no
mally involves a central server which contains all the datag
many thin clients that only cache small amounts of data on the
client machines. All changes to the database are maddraits- o | ock contention can occur, limiting scalability. This is
actions A transaction provides the ACID properties: where many transactions require the same lock. Even if
locks are held for a very short time, it creates a bottleneck
that’s analogous to a multi-lane highway feeding into a sin-
gle lane bridge.

e Atomicity: the transaction will either be performed in its
entirety or else not at all.

e Consistency transactions must comply with all integrity

. : e Long term blocking occurs when a transaction holds a lock
constraints defined on the schema.

for an extended period, blocking all other transactions tha
o Isolation : transactions performed concurrently by differ- ~Need access to that resource. For example, this could frise i
ent users behave as though they were in fact performed one @l0ng term transaction is held while a user edits infornmatio

after the other (this is referred to as serialisability afs- in a dialog window. This has the advantage of isolation for
actions). In other words the changes made by transactions US€rs, but also can prevent concurrent data entry - perhaps
are not visible to each other until after they commit. in unexpected ways (as can happen with page level locking)

or if transactions access common data structures.
e Durability : when a transaction commits, the changes will
be made durable (i.e. won't be lost, typically by flushing In practice transactions may need to be executed servetoside
data to secondary storage). avoid exposure to network latency. This imposes consgant
client side transaction logic.
Most databases today u$e/o Phase Locking?PL) in order Fortunately, the Relational Model allows for set based gsse
to ensure serialisability of the transactions. This mehasvari- ing: A client can issue a query (e.g. in SQL) and the set based
ables are protected with locks and a transaction must loekia vquery evaluation is performed entirely on the server, tyeat
able before access is permitted. According to 2PL, for e@etst ducing the number of synchronous messages between client an
action there are two phases. In the fagpanding phasecks are server.
granted but not released. In the secshdnking phasdocks are
released but n_ot_grarjt_ed. It can be _shown that 2PL is suffitdenzll Distributed transactions
guarantee serialisability of transactions.
The most common approach is to usteong strict 2PL(S- A distributed transaction operates on multiple physicakya-
S2PL). The expanding phase occurs throughout the exeftiorated databases. The challenge is to develog\tamic Com-
the transaction and the shrinking phase (releasing botreghanit (AC) protocol where all databases either agree to commit the
read and exclusive write locks) is performed at the end when thanges or not, even in the presence of failures such as é&sst m
transaction commits or aborts. Unfortunately there isitaély sages or network partitions.

1

In the Two Phased Comm{2PC) protocol each participatingtransactions per second when using replication and disétb
database is asked by a coordinator to “prepare to commit”. trAnsactions [5].
participant can either vote “yes” to indicate readinessdm-<
mit or “no” to unilaterally abort. Before voting yes it mustigh 2.1.3 Commitment ordering
log records to secondary storage. In the second phase the coo
dinator only commits the transaction if all sites voted y&he Fortunately S-S2PL together with Atomic Commit guarantees
coordinator sends either a “commit” or “abort” message theaglobal serializability in a distributed system, withouetheed to
participant and the participants responds with an “ack” [2] ~ share concurrency control information between databgsad a
If a site fails and needs to perform a recovery, any locks thiedm that needed for the AC protocol.
were held as part of a prepared distributed transaction teeed In [4] a new concept calle€ommitment Orderings intro-
remain locked until it is known whether the transaction i$9& duced which generalises this result, providing altereatiays
committed or aborted. to ensure global serializability. This may provide deackléree
A blocking protocols where a site may be forced to block inexecutions, although the price to pay is cascading abortford
definitely while it waits for another site to recover and bmeo tunately cascading aborts is a very significant problem.
accessible again. 2PC is especially vulnerable to failfirte
cpordlnatlor'. When that occurs, 'part|C|pants .must bIockfmdeZ.l.4 CAP theorem
nitely until it recovers [3]. A major problem is that any lack
acquired by the transaction cannot be released. Since 2R isThe CAP theorem [8] states that in general it is not possible t
resilient to a random single site failure, Three phase commithave all three of the following at the same time in a shared dat
(3PC) protocol was proposed. However 3PC is more costly aydtem:
ultimately still subject to blocking under certain failucendi-
tions, and therefore not commonly implemented. 1. Consistency;
It turns out that no protocol exists that is safe in the presen
of network partitions when messages are lost [3]. This iserat 2. Availability; and
discouraging.
Since distributed transactions involve synchronous ngisga
on potentially high latency and unreliable networks, itd$ sur-
prising to see comments like the following:

3. Partition tolerance.

If there are no partitions then consistency and availghbigit
easy to achieve - such as in a centralised database. Alsorsyst
It comes as a shock to many, but distributed transac- that run on LANs often assume there will be no network parti-
tions are the bane of high performance and high avail- tions.
ability [6] Distributed databases may make minority partitions urtavai

able in order to achieve consistency and partition tolexanc

...Yes they're evil. But are they a necessary evil —that's Atomic Commit protocols such as 2PC make some nodes un-
the real question. ...| believe they are indeed the worst available (i.e. block indefinitely) when the network paotis. A
sort: necessary. We're all dooooooomed...... [7] message forwarding proxy to a centralised database isthgt

) consistency and availability of the central server, butgheaxy
.2 number of companies haven't a clue how much pecessarily becomes unavailable when connectivity teeitsrel
danger they are in. They trust to 2-phase transactions ggpyer is lost.
and independent backups. They spend huge sums of | 9], consistency is formalised atomic consistency A
money on HA paired servers to try and make the phys- gistributed object must behave as though all operationpere

ical system failure-proof. At the end of the day, how- t5rmed in some total order and each operation looks as thitugh
ever, it is impossible. Nature finds a way to make g completed in a single instant.

your life miserable, and all because of these horrid dis- o7 rejects atomic consistency and instead only aims to wehie
tributed transactions. [7] consistency at quiescence. Since consistencyesantuallybe
achieved, OT is able to achieve both availability and gartitol-
2.1.1 Single Source of Truth erance (which are conventionally incompatible). Therfor

Conventional database systems emphasise the conce8iof acan be seen as a way to sidestep the very discouraging lonitat

gle Source of Trut{SSOT) for every data element. The moé'f'herem in the CAP theorem.
straightforward way to achieve this is to store every daganeint
exactly once. This aligns well with conventional clientxar ar- 2.2 Conflicts

chitectures - i.e. where the SSOT is enforced by storingait d])) o . B
on asingleserver. The isolation requirement on transactions is associatautieir

serialisability. 2PL implies conflict serialisability wdt implies
view serialisability. Here, a conflict relates to non-contative
access such as two writes or a read and a write tgahge vari-
A distributed database system can replicate data and ygtlgonable, not to higher level semantic dependencies that may hold
with the SSOT principle by applying updates atomically tb across variables. Therefore it is misleading to say thatelfhi-
copies using distributed transactions. One advantageptitae nates all manner of conflicts in multi-user data entry agpions.
tion is for load balancing read only queries across the alvkdl In this article the termsyntactic conflicland semantic con-
copies. The isolation property of transactions implied tither flict by definition refer respectively to low and high level con-
transactions cannot see divergence in the replicated data. flicts depending on whether they can be avoided automaticall
However this approach is impractical and mostly only of achy the database system (typically using 2PL as well as iityegr
demic interest. The problem is poor performance. A nooenstraint checking which can cause a transaction to beeat)or
distributed system able to achieve tens of thousands of aper Therefore, we say that the database system only preventscsyn
date transactions per second will slow to perhaps hundrédgioconflicts.

2.1.2 Distributed transactions on replicated data

2

Syntax relates to formalised integrity constraints. A date Integrity checking can be made very convenient by highlight
schema (i.e. datatype definition) imposes constraints bgip ing parts of the source code that contain errors, similarkyadrd
ing the possible values that may be recorded in the dataBgseprocessing software that highlights spelling and grammanre
contrast semantic constraints are not enforced, perhag@ibe within the editor. This idea is appropriate to many other doa
they are too difficult to formalise. such a electronic circuit design, CAD etc.

Consider a centralised database recording source code filaghen a transaction fails to meet integrity constraints, the ¢
edited by a group of programmers using client applicatiores oventional approach is to abort it and roll back all changesatT
a network. Let the files be locked pessimistically with 2PLe Ws hardly appropriate if a user has spend hours or days on a com
will use this example to compare short lived and long liveashs- plex task. Aborting a transaction also seems inappropitiage

actions. dead-lock scenario - say when two users have each locked a file
needed by the other user to complete their task.
2.2.1 Short lived transactions Long lived transactions often prevent concurrent work .-ae

user may be blocked from editing a file because it has beerdbck

. . } -~ for hours or days by another user. On the upside this redbees t

gramgd edits t'he users will be able to see each others.gylpm risk of conflicts — however it only does so to the extent that it
Fea"““?e (subject to ne_twork Iat_e ncy). .AS a result of bheik- prevents concurrency in the first place. Even so semantie con
ing of files, characters inserted into a file cannot be losabse flicts are still possible despite locking, when users chatijer-

the system avoids dirty reads and lost updates. entfiles where there are semantic dependencies between them. In

. This _has the adv_antage Of supporting concurrent_and h'gr.'tlb] it is pointed out that locking is restrictive and ofteedomes
interactive work. It is well suited for users collaboratiog the a roadblock for users:

same task However, users working on more independent tasks

requireisolationso they can go through the edit-compile-run cy-

cle independently. Having another user’s edits appear eam b ® Locking may cause administrative problems: A user may

serious impediment when they are irrelevant to the taskradha ~ lock a file and then forget about it or go on vacation, pre-
Unfortunately 2PL inevitably exposes the users to netwark | venting other users from doing work. An administrator is

tency — even with sophisticated algorithms that cache dada a needed to release the lock.

retrieve locks optimistically. For example, a user may stimes

notice a few hundred milliseconds delay between hittingya ke e Locking can cause unnecessary serialisation: E.g. locking

on the keyboard and seeing the inserted character appeheont single text file serialises all edits to that file, even thotlgh

screen. Research has shown that a latency exceeding alibut 15 edits may be quite independent.

msec negatively impacts productivity because users irtstaly

slow down, perhaps because they are less sure that they haye| ocking can give users a false sense of security, because

With short lived transactions associated with individufahe-

typed correctly [11]. _ _ they may assume that locking ensures they can make
When multiple users edit the same file there can be problems ¢hanges without introducing incompatibilities, and there
because the displayed text or their caret position jumpsraro fore don’'t communicate with each other adequately.

On the positive side, semantic conflicts tend to be reduced be

cause users become aware immediately of what other users are i ity checki q i
doing, allowing rapid decision making that avoids inconitgat Very strong integrity checking can detect many more corstlict

or wasted work. However, that may not happen if another sisdfPWeVer. it typically does so by accessing a very large priggo

edits don't happen to be visible on the screen, such as wiagn t?]f the data in the database. For example the validation afresir

edit a different file — i.e. the introduction of higher levehsantic 2Ction on source code may require accesaltsource code files

conflicts goes unnoticed. For example, two users may inadv8r® project to verify _the I|.rI1I§||;11g step. (;I'hle iﬁzct IS that_r?rls—
tently add a function with the identical name in differenesil acr:1t.|0n cinnot comlml'[(urlm I as (r'ea I) ocke everr)]/ sirfté
causing an error that is only detected later by the linker. This makes dead-lock almost inevitable because when aalsans

With short lived transactions the system cannot enforcmetr tion is about to commit it \{vill requirg read access to all filleat
integrity constraints. That isn't necessarily a problenvidently are currently .acces.sed with exclusive locks by other usEhne.
programmers work quite well with editors that happily peirsionly solution is to disallow concurrent development cortadie
source code files that don’t compile. Instead, integrityst@ints
can be checkethanuallywhen a user compiles the code or runs))

a unit test and uses the reported errors to make ongoing impré®-3 Locking versus merging

ments and corrections. :
As a result of the problems with 2PL, most developers prefer a

form of optimistic concurrency control to manage their s@ur
code — using automated merging to deal with concurrentregditi

Consider that the database enforces complex integrityieonss ©f the same text file. For example, Subversion is a typiRed
(e.g. source code must compile, link and perhaps even pags s§Sion Control Systerthat promotes edit ar_nd merge wor_kflows.
user-defined unit tests) when each transaction commitsserH¥any RCS products (e.g. Bazaar, CVS, Gitand Mercurial) don’
constraints cannot be applied during a transaction beceseSUPPOrt exclusive locks at all.
user wouldn't be able to insert or delete individual chazext The main reason for supporting locking is to deal visthary
with a text editor. files(e.g. images or videos) because adequate merge tools don’t
Long lived transactions are necessary to move the data atg®#ist.
cally from one valid state to the next. Transactions are eary An interesting question is whether other forms of data (hesi
pensive to commit because of the high validation cost, bait thext files) would also benefit from edit and merge workflows:. Fo
may not be a problem because a transaction is typically assegample it is expected this would be valuable for CAD teams.
ated with a high level task and the rate at which these tagks ldowever a software tool supporting merge on CAD models is
performed is very low (e.g. only a few per day). much more challenging that the case of simple text files.

2.2.2 Long lived transactions

3 Data replication in CEDA 1. All sites must converge at quiescence - meaning that when
all operations have been applied to all sites, the replicate
CEDA allows for decentralised data management within a-peer data will have reached the same final state.

to-peer network. Clients or peers on the network store a com- _ o)
pletely independent copy of the data. The dat@fsicated and ~ 2- Operations should preserve their original intentions

there is no need for a centralised server. 3. Causal ordering relationships between operations nmaist b

respected.

3.1 Operations
The intuition behind OT is comparatively easy. The imple-

Data replication depends on the ability to synchronise @péi+ mentation however is not! For example, in the literaturedfie
cated data asynchronously by sending database changles (calgefined total ordering on characters in a shared text dasume
deltas oroperationg in the background. Operations can be sefiy|ied theeffects relatior{14]. This makes it straightforward to
alised as a stream of bytes - which means they can persist indfle how all sites can in principle converge at quiescence. Ac
database or be sent over the wire. tually implementing an efficient, correct solution is notessy.

In principle operations can be calculated as a differenee ere are subtle problems that only become apparent whes the
tween two database states. However that is inefficient codpage three sites or more.

to a system that generates the operations directly from dbe u
edits. The disadvantage is that it is more difficult to cohegist- 3
ing single user applications to use CEDA because it is nacyesss'
to hook into the edit functions rather than simply the logésav- Real-time, interactive collaboration occurs when a grdugsers
ing of the data. all edit some replicated data and the locally generatedatipes
Individual edits to the data are represented as distinataepeyre sent to peers over the network so that users see eacls other
tions. For example, as a user types on a keyboard, every cBdfts in real-time. For example, a user may see charactpesap
acter inserted or deleted is represented as a distinct taperain a paragraph as they are being typed by another user.
Similarly as a user manipulates an object with the mouseyeve CEDA is efficient enough to allow hundreds of users to inter-
mouse move event may generate a distinct assignment aperafictively collaborate on the same data, sending, receiiags-

Interactive collaboration

This might generate 50 operations per second. forming and applying many thousands of operations per skcon
Operations arstreamedsuch that throughput is constrained by
3.2 Operational transformation network bandwidth, not latency.

. Local operations are applied immediately when they are gen-
Operations are sent asynchronously between peers on the digted — i.e. always independently of network latency. G-
work in order to synchronise the replicated databases.&lipes antees that the application is always as responsive asle sisey
are transformed as required so they may be applied in differgyjication. Therefore the problem of delays affectingdattry
orders at different sites whilst ensuring the distributathases (discussed in section 2.2.1) never occurs in CEDA. Thisobar
reach the same final state and the original intentions of plee-0 p|y immaterial on a reliable LAN, but for fine grained intetise
ations are preserved. collaboration amongst users on opposite sides of the gtaise i

Keys features include: a significant improvement over any locking scheme that espos

e Avoids pessimistic locking of data and the complexity arffl€ user to network latency. _ _
pitfalls with distributed locking, dead-lock detectiomda If the network fails then all users are able to continue wagki

multiphase commit protocols. The only thing a user notices is that edits by other usersaype
o stop. Later when the connectivity is reestablished mergiitig
e True peer-peer based replication be performed efficiently and reliably. The only potentiaiis is
e Synchronisation of peers only sends relevant deltas andg risk of semantically incompatible or wasted work.
extremely fast and efficient. As stated in section 2.2.1, interactive collaboration iy @p-

propriate when users work closely together on the same task.
e Local editing operations are always applied immediateffherefore this mode of real-time data synchronisatiapisonal
without being delayed or blocked - even in the presencejgfCEDA. In fact it is expected that most of the time users will
network failure. require isolation as they work on distinct tasks.

e Robust to network outages, dropouts or changes to network
topology. 3.4 Configuration Management

e Editing of complex data models off line and mergin@EDA supports Configuration Management in a similar way to
changes afterwards. RCS tools like Subversion. A repository (either local or c&@)
- . . L records any number of branches of the data. A user typicdityg e
e Allows efficient tagging, branching and merging (i.e. con- . L .
: : ? a localworking copyin isolation and chooses when to perform an
figuration management) of the entire database. . . :)
updatefrom a repository which will merge changes into the local
Developers that have used configuration management tawdsking copy. Alternatively the user caommitchanges to a
such as CVS or Subversion are familiar with the idea of autepository. Distributed repositories are supported sugcim &it
mated merging of concurrent edits to text files. OT is very-sirar Mercurial.
ilar in nature except that it is based on a more robust mathemaCEDA is able to enforce linearity of a given branch even
ical approach. For example it is not line based and it can ctireugh users are able to work on tasks in isolation. Thisleg
rectly merge edits on a single line of text. Furthermorejkenl separately supporting updates and check-ins, and notiaticav
Subversion, CEDA utilises OT for merging complex data medeiheck-in to be performed without a prior update.

encoded in binary form. This also provides an effect similar to transactions. Ifrsise
There are three requirements that must be met by the systety check-in changes that meet strong integrity constsahren
using OT [13]: the check-ins can be seen as moving the database atomioatly f

4

one valid state to the next. This makes this comparable @ lorarious repercussions when alternative vtypes are alaifab
lived transactions as described in section 2.2.2. the same datatype.

Distinguishing local working copies and repositoriespal
CEDA to get both the benefits of short lived transactions (orba7 2
working copy) and long lived transactions (on a repository) o
The amount of information in a value of a given datatype can be
quantified using entropy which is the logarithm of the numtdfer
possible states, and this relates to the amount of storaame sp
CEDA allows the computers to reconnect in an entirely newquired to encode the value. This makes it meaningful talspe
topology and operations are exchanged as required so theyrndbrmally about low versus high entropy values. For exasnipl
waysconverge at quiescence requires a lot less space to record a 32 bit integer than adlypi
CAD drawing or text document.

Input devices like the mouse and keyboard can only generate
information at a limited rate. It is assumed that individkay

It is assumed that each site is uniquely identified Isjtaiden- Presses and mouse events can be used to generate small oper:
tifier and there is a system wide total ordering on the site idertns, and it takes time to accumulate enough operationsete-s
fiers. This total ordering is used to allow all sites to agnedow ify @ value with high entropy. This should be kept in mind when

to merge concurrent edits whenever there is an ambiguitgaluéonsidering the appropriate vtypes and hence update operat
symmetry In CEDA site identifiers are 128 bit guids. for a given datatype.

Information content

3.5 Changes to network topology

3.6 Site identifiers to break symmetry

3.7 Merge using OT 3.7.3 Assignment

Under OT a merge of concurrent operatiahsays succeecand EVvery datatype has an associated vtype that supports disect
the result is always well defined. Therefore a merge can aw&{gnment to the variable. Obviously concurrent assignmeht
be performed automatically without human intervention. different values to a variable always conflict and there ihimg
Syntactically the result of a merge is straightforward at@at can be done about that. i.e. it isn't possible to prestre
doesn’t do anything nasty like put the database into a corrifgention under OT.
state, or somehow lose or mess up large amounts of work fronfhe situation isn’t as bad as it first appears. Assignmentsby i
one or more users. It is perhaps worth pointing this out tesus¥ery nature is lossy and so it's actually reasonable for mgrg
that are skeptical of automated merging (which for examplet® be lossy as well. Assignment only tends to be used for gmpl

quite common with developers that have never used RCS tdtéatypes that are edited using GUI controls that genesatgra
before) ment operations with minimal effort from the user. For exémp

in the CEDA jigsaw demo application, simply moving a jigsaw
piece can be made to generate an assignment operation.

By contrast it wouldn’t normally be reasonable to use assign
A value is abstract and mathematically defined, eternal, ifflent on a datatype that records a value with high entropy, tha
mutable and decoupled from the computational machine (isvery expensive to edit (like a CAD drawing or a text docu-
doesn't exist in time or space). An example of a value is the iient). Under merging this would arbitrarily keep the editsf
teger 5. It is immutable meaning that it can’t be modified - &.g One user and drop everyone else’s contribution. In any eese,
makes no sense to say that the value 5 can be changed to bed@igs! in section 3.7.2, input devices like the mouse anddeayb
the value 6. A value is eternal meaning that there is no paintGannot generate high entropy assignment operations inrste fi
time where it sprang into existence or later ceases to exist. place.

A datatypéis a set of values plus a set of read only operators orAs a result of symmetry the system needs to pick one of the
those values. Like values, a datatype is abstract and mathen@ssignments on a rather adhoc basis. The total orderingen si
cally defined, eternal and immutable and doesn’t exist iretim identifiers is used to pick a unique “winner” amongst all com-
space. An example is the set of integers with the arithmetic @eting sites. This winning assignment dominates all caecur
comparison operators. and causally preceding assignments. The total orderindn@n t

A variableis a holder for the appearance of an encoded vakite identifiers can be seen as an imposed ordering on theieonc
and is regarded as existing in time and space as part of a confi0t assignments, where all the “loser” assignments anmelée
tational machine. to have been applied before the “winner” assignment.

An update operatocan be applied to a variable to modify its The lossy characteristic of assignment operations is animp
value. Examples are direct assignment, insert and deletaoptant consideration in their use. Curiously there are sitnat
tors on string variables, and increment and decrement tipsrawhere it is exactly what is needed! The CEDA jigsaw demo
on integer variables. application provides a good example of where assignment op-

A variable has avtype which specifies both the variable'srations work well in practice.
datatype (which defines the set of possible values whichahe v
able_ can hold) and the ava_ilable update operators on thebleri 3 7 4 vtypes involving subvariables

Different vtypes may exist for the one datatype. For example
for the signed 32 bit integer datatype, one vtype may su@sert An accessor operatoon a variable returns a reference to another
signment and another may only support increment and deatenvariable called asubvariable Updates on the subvariable indi-
operators. This influences the way merging is performed undectly cause updates on the containing variable.

OT, since OT is concerned with intention preservation ofaied A database is essentially a single variable. Accessor tpsra
operators. allow a database to be regarded as being composed from subvar

The application programmer specifies vtypes when definialgles. Accessor operators often compose, allowing oneilto dr
a database schema in CEDA. It is important to understand ttosvn through nested subvariables.

3.7.1 Values and variables

5

In each of the following four cases, there is a sense in whichn grow and shrink using insert and delete operations \akere
values of that datatype consist of a fixed set of elementsigatthe size of an array is fixed. The elements of a vector are im-
uniquely identified (i.e. indexed) with immutable keys ime® mutable - i.e. they cannot be modified whereas the elements of
fashion: an array are treated like subvariables with their own updpte

erators. The vector vtype is well suited to recording textdve

1. Tuples A tuple type is parameterised by a set of attributgse elements are characters) that can be edited by mulsgls u

where an attribute has a name and a type. The namesgj@ supports merging of insertion and deletion operations.
unique. A tuple variable records the values of all the at-|n the case of an array, an element is forever identified by a
tributes. fixed index position. By contrast, in a vector an element is-co
idered to have an index position which may change over time.
t§iven element is inserted by a particular user at some point
Ime and may shift left or right as other elements are deleted
inserted to the left of its current position. Eventually ¢iement
3. Dynamic arrays A dynamic array is like a fixed size arraymay be deleted (and once deleted that element is gone frever
except that it can grow arbitrarily large. It is formalisesi a Consider the following definitions ahtention of insert and

an infinite mapping from the natural numbers to the elemelglete operations:

values. The array’s type is parameterised by the type shared .)

by all the elements and an initial element value. When ane® Insert The inserted string must appear after the elements on

array is created, all the element values have the initial el- the leftand before the elements on the right of the insertion

ement value. The implementation only physically stores a POSItion.

finite prefix of the array, assuming that all elements in the

infinite suffix have the initial value. The stored prefix can

grow or shrink over time.

2. Fixed sized arraysAn array type is parameterised by th
size of the array and the type shared by all the eleme
Elements are indexed by integer position.

e Delete The elements to be deleted must not appear in the
result.

4. Maps A map associates every key value (of the given keylns_ertions don’t conflict With other ins_ertions— ie. |t isvays
type) to an element value (of a given element type). As fgpssible to preserve the pnglnal mtenuon; of every mgrfor
dynamic arrays, the map type is also parameterised bySYR"Y USer- Itis easy to §|mply take the union of all the insBs
initial element value, and an implementation avoids recor] € result —for each insertion preserving both the stringe
ing elements that have this special value. This allows a m{g§erted as well as the insertion position relative to tieenelnts
to be used when the cardinality of the key type is very Iara?-zat existed at thg t|me th? opergtpn was orlglnallly gepeelra)
or infinite. Note that logically there is no concept of insert 1 1€ only ambiguity exists with insertions at identical posi
ing or deleting elements even though physically the impl%gns' For example consider a string variable that is itjtia

mentation will do that. The CEDA implementation persis@TPty and one site inserts “x”, while another site concutyen

a map using a B+Tree. inserts “y” at the same position. At quiescence should thegst

variable become “xy” or else “yx"? CEDA makes use of totally
For each of these four cases, there are two possible vtypes @dered site identifiers in order to break this symmetry arsdiee
are available: all sites agree on the order of the insertions.
Elements inserted by one user cannot be concurrently delete
1. One supports (and only supports) direct assignment to byea different user (they can't delete what they haven't .got)
entire variable as described in section 3.7.3. The elemenhiterefore a concurrent delete never interferes with thegure
do not represent subvariables and it is only necessarywétion of an insert, and vice versa.
specify the types of the elements as datatypes (not vtypeFinally deletes don't conflict with other deletes. Deletes a
— because the elements are not independently updateabj@eserved by deleting thenion of all the deletes in the merge
variables). result. An element can be concurrently deleted any number of

2 The other d ; q hatthy times — in the merge result it is deleted only once.
- The other doesn't support any update operators thatttjirec So both these intentions can always be preserved under merg-

modify the variable including direct assignment. AISO’rtheing. In that sense operations on vectoever conflict(where

are no operators for insertion and deletion of elements. g"ntactically the vector is modeled as just an ordered segue
stead all updates can only be performed indirectly by '{%elements with no higher level semantics)

ing an accessor operator parameterised by animmutable ®¥he merge result can be expressedhesunion of all the in-

¥ilue to retr;e\r/]e a relference to ahemgnas a SUbV‘T"”%b,le't?gerted elements minus the union of all the deleted elemEhis
e vype 0 the tuple, array ormap I parameterised in E‘simple and intuitive for users to understand, which meheg
vtype(s) of its elements. This in turn affects what update o

) *an easily predict the result of a merge and there will be mo su
erators are available on the elements when they are tre ges

as variables. It is assumed that preserving the intention o
the operation means we preserve the identity of the element
that is updated. Therefore the key value used in the acced-6
sor operator to index the element doesn't require transfeignsider a vtype for a set in which the elements are immutable

mation under OT. It is also assumed that the subvariabiggerefore the only way the set can change over time is totinser
are independent so therefore merging is performed on eagly elements and remove existing elements.

subvariable independently. We use the following definitions oihtention of insert and
delete operations:

Sets

3.7.5 \Vectors

_ e Insert The element to be inserted must appear in the result.
The vector and array vtypes represent the same underlying

datatype — a list of element values indexed by ordinal pwsiti e Delete The element to be deleted must not appear in the
However as vtypes the update operations are different. fovec result.

6

Note that inserts never conflict with inserts, and deleteene3.9 Reject global serialisability

conflict with deletes. Inserts and deletes only conflict asthme] o]
elements. In CEDA we resolve this conflict by giving precemienConventional distributed database systems emphgiisel se-
to the insertion. i.e. insertions dominate concurrenttdsle rialisability of transactions as a criterion for correctness. OT pro-

vides a very different perspective and completely rejedth&
serialisability! Instead transactions are always geeeraically
3.7.7 Bags in a way that only obeykcal serialisability. Obviously a trans-

A bag is like a set except that the multiplicity of each elemeﬂCtion is m_eaningful iq the context of the local database bittlw_
value is recorded. The vtype for a bag offered in CEDA consigdN® operation was originally generated. Under OT, opematio
the elements to be immutable and the bag only changes thofigh©nlY Propagated to sites in a way that preserves causadit

delete and insert operations. The following apply to elemef 'AUONShips between operations. An operation is only eteetu
a given key value: on another site in a context that includes all the operatibat

had been performed when the operation was originally gener-
e Inthe face of concurrent edits we favour inserts over deleff€d- This helps to ensure that the operation will be meéuiing
in a different execution context when it is propagated arglieg
e Concurrent inserts are assumed to have inserted distincf@motely. Animportant criterion for OT algorithms is to pegve
ements. For example if one site inserts 3 elements and & original intention of the operation. For example, if gen

other site inserts 2 elements then after the merge we ass@#ifeh deleted some characters from a string then that operat
5 elements were inserted. should always delete the same characters when it is apptied o

another site. The intention of an operation is by definitiow |
e Concurrent deletes are assumed to have deleted as miewsi or syntactic, and cannot account for higher level sgina
elements in common as possible. For example if one ditéentions because that is too difficult to formalise for &rdgon
deletes 3 elements and another site concurrently deletesf the Inclusion Transformation — which is where one operati
elements then under merge we assume 3 elements vieteansformed to an execution context that includes amaibre-
deleted. current operation, whilst preserving its original intemti The
aim of OT is to support the merging of concurrently performed
e A delete can only remove an element that was inserted dpyerations that don't really conflict according to the ii@ns
an operation that causally preceded the delete. i.e. aedeftthe users, even though the operations would be regarded as

can never be thought of deleting an element inserted byghflicting in a conventional database using pessimistiita.
concurrent insert.

3.8 Reject SSOT 3.10 Reject distributed transactions

A ial diff ith tional " is that CEDI the CEDA implementation each site persists all operation
cruqa merence with conventional systems 1S that LELfs 1404 persistent Object Store with proper attentionttorac-
doesn’t subscribe to to the usual formulation of the SSOfqgdri -

e . Tty
ple. Putting it another way, every peer is regarded at aksias . .
an independent and more to the pointdid version of the data. As for conventional systems, transactions are used to fheen

. . . sise access to a database - particularly mutative opesatitow-
This reflects reality much more closely. If data is storedasep . .

) " ever access is always local to the database on the same machin
rately in space, why pretend it's the same data, and why et

it can be updated simultaneously? The latter conflicts with Eand.t.her-efore av0|ds.any effects of net.workl Iatency_or nEwo
stein’s Theory of Relativity where no information can gotéas partitioning. T.h.e main role of transactions is to d_eflne hb_un
than the speed of light. A distributed transaction tries #ken aries for atomicity and rather less to do with consisterayla

all observers agree on the simultaneity of events diseibun tion or durability. In CEDA they emplogonservative 2PLThe

space, which is like the old fashioned Newtonian view of globdata 'S part|t|oned Into coarse m_utually exc_:lusm&)_ acesEach
. : pspace has a single lock supporting exclusive write or shraiad
consistency and global time. ;)
modes. All required locks on the applicable pspaces must be

Rejecting SSOT allows each peer to continue operating gnr%nted before a transaction begins. Locks are requestad in

matter how badly the network becomes partitioned. i.e. lav . o .
I o - consistent total order so that dead-lock is impossible.
ability and partition tolerance are both maximised. Peegsak

lowed to continue working because we don’t impose an adilfici
constraint (SSOT) on the system. 3.11 Applications where OT is inappropriate

OT allows users to make concurrent edits that are automat-
ically merged without syntactic conflicts (but like lockin@T OT is inappropriate where the data needs to be centralised be
cannot hope to prevent semantic conflicts). This is achiéyedcause it maps very directly back to something that physieadt
allowing operations to be performed in difference orderdifat ists in the real world. In these case the SSOT principle isired
ferent sites, and yet crucially, all sites converge to thmeeséinal for correctness.
state. This agreed final state represents a kind of nonidechl For example, an airplane reservation system should be dealt
SSOT (admittedly an oxymoron)! Interestingly this has aa-arwith centrally and use pessimistic locking, because thesereal
logue in Relativity where the absolute ordering of spaneeti airplane with real seats on it, and double booking isn’t adgoo
events is only partial, being relative to the observer foergs idea. Replicated data synchronised using optimistic cosoay
that are outside each other’s future or past light cones,yand control allows for divergence, and hence allows for douloleks
there is an underlying, shared reality (spacetime). ing of seats.

A vector timecan be used to unambiguously identify any In the case of financial systems, when an ATM provides a cash
causally valid version of the data, even though it is sharetl avithdrawal there is a transaction involving real money anus-
edited by any number of sites without any distributed Atomighere the withdrawal is made on an account in a database. In a
Commit protocols. One can define any SSOT one likes by sisense the account balance recorded in a physical datalpsse re
ply specifying a vector time. sents real money. Therefore transaction atomicity witpeesto

the real world is required. This explains the need for tratisa bool Joi nednRi ght ;

durability (the 'D’ of ACID). bool Joi nedOnBot t om
Financial systems also seem to need pessimistic locking- Ho b

ever It can be argued that it's possible for a distributedesygo $tupl e TJi gsaw

support transfer of money between bank accounts without an

need for distributed transactions. int32 NunRows;

int32 Nuntol s;
TJi gsawPi ece Pieces[];

3.12 OT and integrity constraints " B

The mathematics of OT is subtle enough that numerous inciorre . i] . i
algorithms have appeared in the literature for the simptecd ' "€ completed jigsaw is comprised of pieces arranged in a two
edits on text ([14] discusses some of these). FortunatelgdF d|meQS|onaI gnd with the given number of rows anq columns.
tions exist on a wide enough set of datatypes to make it padctiT € jigsaw piece at row r and column ¢ has an index
in general. r«NunCol s + c. Information about the pieces is recorded in a

OT imposes significant restrictions on what integrity coflynamic array indexed by i. Each piece records its (xy) po-
straints can be directly enforced on the editable data. derorSition and two boolean flags for whether it has been joined to
to support strong integrity constraints it is generallyessary to the piece immediately on its right or below as they appear in
impose themindirectly. Therefore the database only enforcd§€ completed jigsaw. Initially each piece has nedonRi ght
comparatively simple syntactic validation on the editatiéga = Joi nedOnBottom = fal se allowing all the pieces to have an
and the stronger integrity constraints that are incomfeatiith independent (x,y) position on the screen.
OT are treated as semantic constraints. These can be piegoin The jigsaw application allows many users to concurrently
or highlighted in a data entry application - either by havihg Move the pieces around. Occasionally two people may drag the
user manually run a validation check or else having the stibd Same piece with the mouse in different directions, and every
check run continuously — say as a background task. This allc¥¢es it rapidly flicker between the two alternative postias in-
users to correct problems over time (and normally the elitigm COMiNg operations to a given computer successively remsisey
of all semantic errors would be a high priority). (x,y) location. This is an example of a “conflict” that is vadly

This provides an elegant methodology to deal with merge céfvious and its resolution simply involves one person gvip
flicts. As we have seen, under OT, a merge always succeeds Wiff{ore the other.
out syntactic conflicts. However, a merge could easily cause The surprising feature supported by OT is that some people ca
semantic conflict. Such merge conflicts could be automégical/ork on the jigsaw off-line and it is always possible to sflgn
pinpointed, highlighted then corrected by a user with aafilit Merge in their work. At no time do dialogs appear asking users
software application. It is even possible for a group of siger 0 resolve conflicts. This is achieved despite a model thap&e
take part in an interactive session aimed at fixing the meoge ctrack of what pieces have been snapped together, and irhfact t
flicts. OT is applied in such a way that pieces that had been snapped

There are two variations on this theme: Either the validatigether can never come apart after merging.
version of the data only becomes available once all errogs anAlthough OT sometimes needs to make arbitrary decisions in
omissions have been corrected, or else it is possible atrast Order to resolve ambiguities because of symmetry, it isiposs
to calculatea pristine version of the data that obeys the strond¥g at a higher level tanterpret the shared “syntactic” data in
constraints, typically subtracting away the parts of theadaat Such a way that some activities (like snapping pieces tegpth

break integrity constraints. This appears straightfodniarthe take precedence over others (like moving pieces aroundg Th
Relational Model. For example, trick is to realise that integrity constraints typicallydree the

degrees of freedom in the model, and therefore there is an op-
e meet a foreign key constraint by throwing away records wiglortunity to resolve conflicts in favourable ways. In theeca$
a foreign key that cannot be resolved. the jigsaw example, the syntactic model records the (x,\@vef
) . ery piece, as well as information about which pieces hava bee
e meet a no-null constraint by throwing away records thghapped together. The integrity constraint (which can be re
have a null garded as applicable in a “semantic model” of the jigsaw)msea
Iswat some of the recorded (x,y) positions of the pieces need t
e ignored! In a way, as the jigsaw is being put together the
An interesting example of using a semantic model on top QHmber_of degrees of freedom in the semantic model is. steadil
the syntactic one appears in section 3.13. degreqsmg. The OT itself o.nly cares about the gyntactlcemoq
which is directly expressed in the schema. In this case tijie hi
. level semantic is expressed in the implementation of mestlikel
3.13 Jigsaw example Get Pi ecePosi tion(int i), whichreturns the logical position of

Since the meaning of OT can appear rather mysterious it itwdh€ ith jigsaw piece. The implementation simply offsetsiirthe
studying some specific examples to find out what it actuafjpysical (x.y) of the top left most piece in any given set ofi-co

means in practice. Consider a CEDA jigsaw application usifi§cted pieces as a basis for calculating a logical positompet-
the following schema: ible with the integrity constraints.

Note that the semantic view of the data is not ncessarily read
only. E.g. it is possible to implement a semantic version of

e meet a unigueness constraint by throwing away duplicat

$tupl e TPoi nt 2d

int32 x SetJigsawPiecePosition(i,pos) that ensures that alepiacthe
int32 v, group containing piece i move together as expected. Thisisnea
B it syntactically needs to assign the position of the top pédte
. . in the group!
$tuple TJ WP , i
upte T gsanr ece OO classes that decorate an underlying syntactic model are
TPoi nt 2d Posi ti on; able to express a higher level model that is expressed irstefm

the lower level syntactic model. development, an enormous amount of validation is perforbyed
In many respects the jigsaw example seems an unlikely ctre compiler. In addition good developers write extensivioa

didate for OT, even though it works well in practice! The jigmated unit tests that make it very hard for bugs to go undedect

saw model contains assignable variables that are implicisisy in the formal releases.

because they can only record their last assigned value. rUnde

merging the system is forced to disambiguate by ensurirgitas

agree on a unique “winner”. The saving grace is that the dost%eferences

manual conflict resolution isn't commensurate with the ioad o)

effort of assigning the value. Therefore users seem vergyap 1] Wikipedia, — Concurrency Control http://en.

put up with lossy merges. wi ki pedi a. or g/ wi ki / Concurrency_control .
.!:)ialogs repqrt_ing amerge con.flict yvould be undgsirablehWifz] J.N. Gray,Notes on Database Operating Syste@perating
a jigsaw containing 500 pieces, it's simply not feasiblexpezt Systems: An Advanced Course, Lecture Notes in Computer

a user to resolve each and every merge conflict manuallylyt on sgience. Vol 60 pages 393-481. Springer-Verlag, Berlin
seems reasonable to manually resolve conflicts on entetad da 1g7g.

that involved a lot of work in the first place. Moving a jigsaw
piece takes too little effort to justify manually promptitige user [3] D. Skeen, M. Stonebrake Formal Model of Crash Recov-
to disambiguate a merge conflict. ery in a Distributed SystephEEE Transactions on Software
In many examples (but not in the case of the jigsaw), data en- Engineering, Vol 9, Issue 3, May 1983, pages 219-228.
try often involves creation afew data For example, when a use
works on a text document, most of the effort involves inserti
new text. Therefore merging off-line work doesn’t tend ts-di
card edits - basically because the shared data can alwaysgro
contain everyone’s contribution.

r[4] Yoav Raz,The Principle of Commitment Ordering, or Guar-

anteeing Serializability in a Heterogeneous Environment
of Multiple Autonomous Resource Managers Using Atomic
Commitment Proceedings of the Eighteenth International
Conference on Very Large Data Bases (VLDB), pp. 292-312,

]) Vancouver, Canada, August 1992.
3.14 Semantic conflicts
Kenneth P. BirmanReliable distributed systems: technolo-

As far as actually locking out users from off-line work, thesh gies, Web services, and applicatiorZ005, ISBN: 978-0-
important criterion is the level of semantic incompattiil{or 387-21509-9.

else overlap) in the high level tasks, and the system tylgicah-

not formalise that. It can’t even necessarily determinetise [6] Dan Pritchett,2PC or not 2PC, Wherefore Art Thou XA?
substantial conflict exists during the merge! Consider tle f December 2006, htt p: // ww. addsi npl i ci ty. con
lowing users that are all working off-line doing some workan addi ng_si nplicity_an_engi/2006/ 12/ 2pc_or _

shared text document: not _2pc_. htm
User Task [7] Distributed Transactions Are Eyihttp://c2. com cgi/

1 Restructure the chapters wi ki ?Di stri but edTransacti onsAr eEvi | .

2 Write the introduction . o

3 Write the conclusions [8] Eric Brewer, Towards R_obust D|str|buFed. SysterKeynqte

4 Write the introduction speech,.ACM Symposium on the Principles of Distributed

5 Correct the spelling Computing, 2000 July.

s Correct ”l‘e gra]rjlmar and diction [9] Seth Gilbert, Nancy LynchBrewer's conjecture and the fea-
nsert figures sibility of consistent, available, partition-tolerant tveser-

Under OT, after merging we end up with a reasonably faithful vices ACM SIGACT News archive, Volume 33, Issue 2
union of all their efforts. The biggest problem is that theit (June 2002), pages 51-59.
be two introductions. The problem is not so much with the in-
tegrity of the document - because it is easy to delete oneeof E%O]pgﬁ%kco\yé?:;fnuizr:tfgl’ Sv.it,xlI;Zieeﬁgﬁc:r%ﬂglsnhanl\ggﬁ
introductions aﬁerwards. Rather it is in the wasted efffort . ISBN-13: 978-0506004484, June 2004.

It seems that in this case, locking in any shape or form will ad

nothing of value, and only interfere with the ability for theers [11] James R. Dabrowski, Ethan V. Munsdé® 100 Milliseconds

to work in isolation. Furthermore, a locking protocol is bleto Too Fast? Conference on Human Factors in Computing Sys-
detect the semantic overlap in the high level tasks betweersu tems, ISBN:1-58113-340-5, pages: 317—318, 2001.

2 and 4. In fact these two tasks are probably the least lilely t

create syntactic conflicts that could be detected by lodking ~ [12] Wikipedia, ~ Operational ~ Transformation htt p:
Most conflicts between users seem to occur at a semantic level/ / en. wi ki pedi a. or g/ wi ki / Cper ati onal _

that is inaccessible to the system. In a way locking impjicit- transformation.

counts for t?at (bef?_aﬁe i tTg syst';ergl WSS alble to underhﬁl:ar:g[ls] C.Sun, X.Jia, Y.Zhang, Y.Yang, D.Cheichieving conver-
presence of a conflict it would probably be clever enoughre gence, causality preservation, and intention preservatio

::okrretc tive aﬁt'c;n ?S Wtel:) ' tlk? stead locking simply tforceens{f to real-time cooperative editing system@&CM Transactions on
axe turns. Unfortunately there are many semantic con Computer-Human Interaction (TOCHI), Volume 5, Issue 1,

can go undetected, unIe_ss locking is at a very coarse levtl, b March 1998, Pages 63—108.

that comes at a heavy price - lack of concurrency.
A premise of CEDA is that in practice it is more important tfl4] Du Li and Rui Li, 2004. Preserving Operation Ef-

detect integrity constraint violations than conflicts. e tex- fects Relation in Group EditoysProceedings of the ACM

tent that the presence of such violations canchkulatedwe CSCW’'04 Conference on Computer-Supported Cooperative

have a more robust way of finding and isolating problems with Work, ACM Press New York, NY, USA. pp. 457—466.

the entered data. For example, in a database supportingsseft

9

