
CEDA Log Structured Store

David Barrett-Lennard
Cedanet Pty Ltd

Perth, Western Australia
david.barrettlennard@cedanet.com.au

March 24, 2010

Abstract

This article describes the CEDA Log Structured Store which
provides persistence for arbitrary sized binary objects. It sup-
ports frequent and fine grained transactions, recovery, backup,
hot standby and is self cleaning to avoid fragmentation. It pro-
vides excellent control over clustering to optimise read perfor-
mance, and the ingestion rate closely matches the sustainedwrite
rate of a hard-disk (e.g. 100 MB/sec), and yet provides proper
journaling for atomicity in the face of failures.

1 Introduction

The CEDA Log Structured Store(LSS) is a persistent store for
arbitrary sized binary objects, referred to asserial elements. It
has all the features required for an industrial strength database
storage layer.

Serial elements are read or written as a byte stream, in a man-
ner similar to the C functionsfread andfwrite used to read and
write a file. The store can deal efficiently with very small and
very large serial elements. The overhead on secondary storage is
of the order 20 bytes per serial element.

Serial elements are identified by a 64 bitSerial Element Iden-
tifier (Seid). The LSS provides a mechanism for allocating new,
unused Seids as required. Seids are logical (not physical),mean-
ing that a Seid doesn’t represent a physical location on disk.
Therefore the LSS is able to move serial elements in order to
avoid fragmentation and maximise clustering for read perfor-
mance.

Serial elements are created, modified or deleted within the
scope of a transaction, and the LSS ensures atomicity of each
transaction – i.e. all changes made by a transaction are applied
or else none are applied. For example, a transaction could fail to
commit because of a power failure or a system crash. The next
time the store is opened, any uncommitted transactions are auto-
matically rolled back. CRC checks and other measures are taken
to carefully validate the recovered data. The time for a recovery
scan is bounded, and on typical hardware will never take longer
than a few seconds.

Changes to serial elements are never performed in-place on
disk. Instead new versions of serial elements are always rewritten
at the end of a single growinglog comprised ofsegmentsthat are
typically 512k or 1M byte in size. This practically eliminates disk
seek overheads during writing, and data can typically be written
close to the maximum sustained transfer rate of the hard-disk,
which could translate into millions of serial elements per second.

Serial elements are written one after the other with no wasted
space even though they may vary greatly in size. Serial elements
never become heavily fragmented like files in a file system be-
cause serial elements are rewritten when they change size.

Multiplexing of the output allows for hot standby and backup
consistent with 24 x 7 operation.

The LSS has been thoroughly tested. It has accumulated weeks
of continuous stress tests on a range of different machines with
different hardware, reading and writing many tera-bytes ofdata.
This testing has included emulation of random system crashes
and validation that the store recovers to a valid snapshot.

2 Serial Element Map (SEM)

At its essence the LSS is a persistent map called theSerial Ele-
ment Mapor SEM. This maps a Seid to an ordered list of bytes
(i.e. a byte stream). When an LSS is first created the SEM is
empty.

A serial element (identified by a Seid) is said to exist if there is
an entry for that Seid in the SEM. This includes serial elements
that have been written with zero size. There is an entry in the
SEM if and only if the serial element has been created with a call
to WriteSerialElement but has not subsequently been deleted
with a call to DeleteSerialElement. A serial element can be
recreated after it has been deleted (perhaps in the one transac-
tion), simply by callingWriteSerialElement again.

2.1 Serial element Identifiers

Each serial element is uniquely identified by a 64 bit number
called a Seid. The null Seid has the value 0 and cannot be used for
any serial element. A Seid can be regarded as an array of 8 bytes.
For reasons that are peculiar to the implementation of the LSS, a
valid Seid requires that each byte be non-zero. A database typ-
ically bootstraps a root object with Seid0x0101010101010101.
The LSS public headers define a constant namedROOT_SEID with
this special Seid value.

ClassSeid (defined in Seid.h) supports all six comparison op-
erators (==, !=, <, <=, >, >=). An ordering is imposed to al-
low the Seid datatype to be used for the key instd::map or a
B-Tree.

An application layerusing the LSS will typically record Seid
values in the byte streams of serial elements, to allow serial ele-
ments to reference each other.

The number of serial elements is constrained by the maximum
size of the store which is about 500 TB with the default settings,
rather than the size of the 64 bit Seid space. This 500TB limit
is simply a function of the size of the root block and can be in-
creased easily if required.

1



3 Concurrency

The LSS implementation only takes partial measures to constrain
concurrent access to serial elements. It is concerned with the in-
tegrity of its internal data structures. For example, theLSS Seg-
ment Cacheis thread safe. However this is relatively low level,
and insufficient to ensure serialisability of transactionsdefined in
anapplication layer(which we use to refer collectively to the lay-
ers above the LSS). It is likely that an application layer provides
its own concept of transactions, and only opens LSS-transactions
for short periods in order to propagate changes made to transient
objects resident in memory to the store.

LSS-transactions would be sufficient but for the fact that they
are only intended for parenthesizing writes to the store. Itis not
necessary to open an LSS-transaction in order to read serialele-
ments. Any number of threads can concurrently read serial ele-
ments (even the same serial element). This corresponds to the
shared read access mode often provided by high performance
database systems. Furthermore, multiple threads can be read-
ing serial elements concurrently with an LSS-transaction that is
creating, modifying or deleting (other) serial elements. In other
words, the LSS provides no mutex to enforce mutual exclusion
between the thread writing new data to the store, and the threads
that are reading existing serial elements.

All writes (i.e. all API functions that modify the SEM) are
fully serialised. Only a single thread can open an LSS-transaction
at a time. This is enforced by a mutex within the implementation
of the LSS. The mutex is locked byOpenTransaction and un-
locked whenClose is called on the transaction. Although LSS-
transactions are mutually exclusive, an application layermay
support concurrent changes to objects resident in memory, but
a detailed discussion of that topic is outside the scope of this ar-
ticle.

It is therefore up to the layers above the LSS to make sure con-
current reading and writing is performed in a meaningful way
(and as a minimum ensures that a serial element is not concur-
rently written and read by different threads). For example alayer
on top of the LSS may implement alock managerthat ensures
transactions follow aTwo-Phased Locking(2PL) protocol.

Strict 2PL is where locks are taken as objects are accessed
while the transaction proceeds, and all locks are released when
the transaction ends. Unfortunately it allows for dead-lock sce-
narios and the normal approach is to pick one of the transactions
(the “victim”) to be aborted. However the LSS doesn’t support
aborting of an LSS-transaction (and roll back), so this concept
would need to be implemented somehow within the application
layer.

The LSS is effective for supportingconservative 2PLin the
application layer. This is where all locks needed by a transaction
are gainedbeforethe transaction begins. If locks are gained in
a consistent total order, dead-locks are avoided. Conservative
2PL can be appropriate when relatively course level lockingis
used - such as by partitioning objects into large spaces thateach
employ a single mutex (which could optionally support a shared
read access mode in addition to exclusive access).

4 Use of Abstract Base Classes

Most of the functionality in the API is provided using pure ab-
stract base classes which serve as interfaces. In general these
abstract base classes have aClose method, and this must always
be called to destroy the object and free allocated resources. Once
Close has been called it must be assumed the object has been de-
stroyed so it is not permissible to issue any more method calls. It

EOpenMode Already exists
Doesn’t

already exist

- fail fail
OM_CREATE_NEW fail create+open

OM_DELETE_EXISTING delete+create+open fail
OM_CREATE_ALWAYS delete+create+open create+open
OM_OPEN_EXISTING open fail
OM_OPEN_ALWAYS open create+open

Table 3: EOpenMode

is very important not to use the standard C++delete operator on
the pointer.

The header fileCeda/cxUtils/AutoCloser.h defines a conve-
nient template classAutoCloser<T> that can be declared on the
frame and it callsClose in the destructor. This ensures the code
is exception safe.

5 Creating or opening an LSS

All data in an LSS is stored in a single file. An LSS is created
or opened with a call togfnCreateOrOpenLSS which has the fol-
lowing signature:

ILogStructuredStore* gfnCreateOrOpenLSS(
const char* lssPath,
const char* deltasDirPath,
bool& createdNew,
EOpenMode openMode,
const LssSettings& settings);

Table 1 describes these formal arguments. The file is
opened with exclusive access so it is not possible for an-
other process to open the same LSS file.gfnCreateOrOpenLSS

never returns NULL. After using the store it must eventu-
ally be closed by calling theClose method. If an error oc-
curs thengfnCreateOrOpenLSS throws aFileException (see
FileException.h) or elseCorruptLSSException.

6 Reading serial elements

As discussed in section 3, it is not necessary to open a transaction
in order to read serial elements.

Reading a serial element may block on I/O if the required data
is not already resident in memory in theSegment Cache. A very
large serial element may take up many segments. Segments are
loaded from disklazily as the serial element is read as a byte
stream.

The methodILogStructuredStore::ReadSerialElement is
used to open a serial element with the givenSeid for reading.

ICloseableInputStream* ReadSerialElement(
Seid seid) const;

It is an error to call this function on a serial element that iscur-
rently opened for writing (within a transaction), or being deleted
using a call toDeleteSerialElement.

Shared reading of serial elements is supported. i.e. any number
of threads can independently (and concurrently) read the same
serial element, assuming each such thread has made an indepen-
dent call toReadSerialElement - i.e. they don’t try to share a
returnedICloseableInputStream.

ReadSerialElement returns an input stream interface which
can be used to read the bytes currently recorded in the serialel-
ement in sequence from start to finish. Seeking within the serial

2



Argument Description

lssPath

A null terminated string representing the path to the LSS fileto be opened or
created. It may either use forward or back slashes in the path.
If lssPath = "memfile", then the LSS will be transient – i.e. it will reside
entirely in memory.

deltasDirPath
NULL or else specifies the path to a directory in which to create delta files. See
section 14

createdNew
Boolean out-parameter assigned the valuetrue if and only if a new store was
created.

openMode

An enumerated type that determines whether to allow an existing store to be
opened or a new store to be created. The possible values are listed in Table 3.
If the file already exists then there are three options: The function can either
fail, open the existing file, or delete the old file and create anew empty one.
Otherwise, if the file doesn’t exist then the options are either to create an empty
file or else to fail. This leads to3× 2 = 6 different modes, only5 of which are
actually useful.
If the file exists when it’s not expected or the file is absent when it’s expected
then aFileException exception is thrown.
If openMode is either OM_CREATE_ALWAYS, OM_DELETE_EXISTING or
OM_CREATE_NEW any existing file will be deleted andcreatedNew will be
assigned the valuetrue

settings
Defines various low level settings that influence the performance of the LSS.
See Table 2 for a description of all the fields in theLssSettings struct.

Table 1: Arguments to gfnCreateOrOpenLSS

Field Initial value Description

m_flushTimeMilliSec 1000 Maximum time in milliseconds to flush the log after committing a transaction

m_cleanerUtilisationPercent 85.0
If segment utilisation (expressed as a percentage of the segment that contains
useful data) falls below this threshold then a segment is cleaned

m_enableFileBuffering false
If set then the Win32 file cache will be used. Typically not required because
the LSS performs its own buffering, with itsSegment Cache.

m_maxNumSegmentsInCache 32
Maximum number of segments in the segment cache. With default values seg-
ment cache is 32 x 512kB = 16 MB.

m_numSegmentsPerCheckPoint 128

Sets the rate at which the store is check pointed. With the default values a check
point is performed after writing 128 x 512kB = 64 MB to the log.This controls
the maximum time taken to perform a recovery scan. For a modern hard-disk,
it only takes one or two seconds to read 64MB. Performing check points rarely
has the advantage of writing less “meta data” to the log, and ensuring that the
meta data is well clustered. It also means the root block is written less often.

m_segmentSize 524288

Size of each segment - the unit of download from disk. If too small, then
performance becomes dominated by the head seek and rotational delay times
of the hard-disk. If too large then performance becomes overly dependent on
the clustering of related data. As a very rough guide, shouldequal the product
of the maximum transfer rate of the hard-disk in bytes per second, times the
seek time in seconds. E.g. for transfer rate = 50 MB/sec, seek= 10 msec then
product = 500k.
If an existing store is opened and the existing segment size doesn’t match the
segment size specified in the settings, then the requested segment size will be
ignored.

m_forceIncrementMSSN false Force increment of the MSSN during start up

Table 2: LssSettings fields

3



element is not supported.ReadSerialElement returnsNULL if no
serial element exists with the given Seid.

Clients read from the stream with calls toReadStream, which
has the following signature:

int ReadStream(void* buffer, int
numBytesRequested);

This blocks on I/O, trying to readnumBytesRequested from
the stream. It returns the actual number of bytes read which may
be less thannumBytesRequested, indicating the end of stream
was reached.

Close must be called on the returned stream after it is used (in-
cluding when exceptions are thrown by the LSS). It is allowable
to close the stream before reading any or all of the data.

7 Seid Spaces

The high 32 bits of a Seid is called theSeidHighand the low 32
bits is theSeidLow. For each SeidHigh there are about 4 billion
available SeidLow values. This is referred to as aSeid-Space.
Note therefore that a Seid-Space is identified by a particular Sei-
dHigh value and there are about 4 billion Seid-Spaces available.

Within the application layer on top of the LSS, there may be
multiple, independent purposes for storing serial elements. In
that case it can be harmful to allocate Seids from a single global
allocator because over time Seid values are interleaved across
these unrelated purposes. The downside is that the meta-data
(see section 17.1) used internally by the LSS to record the cur-
rent physical location of serial elements cannot be so effectively
clustered with the serial elements on disk.

To combat this problem, each Seid-Space is regarded as an
independent space forprivate Seid allocations. This is easily
achieved by persisting in the LSS the followingSeid Allocation
Data (SAD):

1. theSeid Allocation Map(SAM) which is a map from Seid-
High to the next available SeidLow for the purpose of allo-
cating a new and unused Seid in the Seid-Space correspond-
ing to that SeidHigh; and

2. the next available SeidHigh for the purpose of allocatinga
new and unused Seid-Space.

So with modest storage space overheads, the LSS provides
multiple, independent spaces for Seid allocations.

There is aconsistency requirementbetween the SEM and
SAD. For any given Seid present in the SEM both the follow-
ing must hold:

• its SeidHigh cannot be seen as unallocated according to the
next available SeidHigh for the store; and

• its SeidLow cannot be seen an unallocated according to the
next available SeidLow for that Seid Space.

To ensure this, calls toWriteSerialElement implicitly update
the SAD as required. Therefore, strictly speaking, it can beop-
tional for whether to explicitly call the Seid or Seid-Spaceallo-
cation functions. Reasons why that may be useful are outsidethe
scope of this article.

There is no converse requirement. i.e. it is allowable for large
regions of Seid Spaces to have been reserved (i.e. marked as al-
located in the SAD), and yet corresponding serial elements don’t
actually exist in the SEM. For example, when serial elementsare
deleted from the SEM, the Seids are never marked as available
again in the SAD. Instead the Seid allocator will never recycle

Seids. One good reason for this is to detect dangling Seid refer-
ences reliably. It is also a pragmatic matter, because the allocator
only records the next available value of a SeidHigh or SeidLow
rather than sets or intervals that are free which would be much
more expensive. It is also worth noting that a 64 bit address space
for Seids is enormous and on hardware in the foreseeable future
practically inexhaustible, so there is no justification to go to the
trouble and expense of recycling Seid values.

The LSS implementation takes some corresponding liberties
as far as ensuring allocation requests on the SAD are persisted.
More specifically, the recovery scan after a system crash will en-
sure that the SAD and SEM are consistent in the sense defined
above, but may have lost some of the allocation requests.

7.1 Allocation of Seids

Allocation requests are not regarded as part of a transaction on
the LSS and this is reflected in the API where the Seid-Space
and Seid allocation functions are available on the LSS without
opening a transaction.

CreateSeidSpace returns a new and unusedSeidHigh that rep-
resents a Seid-Space which can be used to allocate about 4 billion
Seids.

SeidHigh CreateSeidSpace();

When a new serial element is to be written to the LSS for the
first time, it is typically necessary to allocate a fresh Seidfor it.
This can be achieved with a call toAllocateSeid, providing a
suitable SeidHigh value.

Seid AllocateSeid(SeidHigh seidHigh);

Any number of threads can concurrently allocate Seid-Spaces
and Seids because the above allocation functions are thread-safe.

7.1.1 Allocation of affiliate Seids

The following is an alternative Seid allocation function that is
passed a Seid as an in-out parameter. The input value is an ex-
isting Seid in the LSS and the output value is a new, unused seid
that is deemed to be affiliated with the input Seid. Typicallythe
new Seid will share a large portion of the prefix of the Seid con-
sidered as an array of 8 bytes, and therefore the Seids will tend
to be localised with respect to the 8-level hierarchical mapused
to index the physical locations of the serial elements.

bool AllocateAffiliateSeid(Seid& seid);

This is useful for very large sets of serial elements where itis
difficult to know a-priori how to partition the serial elements into
separate Seid-Spaces.

Before this function can be used to allocate Seids, it is first
necessary to “bootstrap” by callingCreateSeidSpace to allocate
a Seid space, thenAllocateSeid to allocate a root serial ele-
ment in the space. Then, instead of callingAllocateSeid to
allocate additional serial elements, it can be preferable to call
AllocateAffiliateSeid. The Seid passed into the function rep-
resents an “affiliate” Seid to which the new Seid returned by the
function will be clustered.

E.g. the affiliate may be a parent node in a tree of nodes.
AllocateAffiliateSeid does a good job of allocating Seids for
trees of nodes which grow over time from any position by adding
child nodes.

4



8 Transactions

A transaction is associated withmutativework on the LSS. i.e.
for creating, rewriting or deleting serial elements. As discussed
in section 3, transactions on the LSS are serialised using a mutex.

During a transaction it is possible to delete or write any number
of serial elements. Writing a serial element encompasses creation
of a new serial element as well as rewriting an existing serial
element.

8.1 Opening a transaction

A client opens a transaction by callingOpenTransaction
on the ILogStructuredStore. This returns a pointer to a
ILssTransaction which is defined as follows:

struct ILssTransaction
{

virtual void Close() = 0;
virtual void FlushWhenClose() = 0;
virtual ICloseableOutputStream*

WriteSerialElement(Seid seid) = 0;
virtual void DeleteSerialElement(Seid seid) =

0;
virtual void DeleteSeidSpace(SeidHigh

seidHigh) = 0;
};

Note well that only the thread that calledOpenTransaction
is allowed to call any of the methods on the returned
ILssTransaction.

8.2 Closing a transaction

There is no concept of clients aborting a transaction. If a thread
begins a transaction then that thread (and only that thread)must
eventually commit the transaction with a call toClose. As such
there is no concept of roll-back during the normal operationof
the LSS. Roll-back only occurs during recovery (i.e. when the
store is opened when it was not previously closed gracefully).

An exception may occur in the middle of a transaction. For
example, the thread that opened the transaction makes a callto
ReadSerialElement and this fails because of a low level I/O er-
ror, throwing aFileException. It is vital that the client still calls
Close even though an exception occurred. Otherwise the mutex
will not be closed, and there could be a subsequent dead-lock-
such as when the client tries to close the LSS.

The best way to ensure correctness in the face of exceptions is
to declare an instance of anAutoCloser<ILssTransaction> on
the frame in order to perform a transaction on the LSS within a
lexical scope.

Note that when such an internal I/O error occurs, the LSS
will enter an “error” state, preventing any transactions from be-
ing propagated to disk, even though the transaction is explicitly
closed.

It is an error to close a transaction that is in the mid-
dle of writing a serial element. In other words, after call-
ing WriteSerialElement to write a serial element, the returned
ICloseableOutputStream must be closed before it is allowable
to close the transaction.

If FlushWhenClose has previously been called on the trans-
action thenClose will synchronouslyflush this and all previous
transactions on the LSS.

Closing a transaction destroys the transaction so it is not per-
missible to call any of the methods again.

8.3 Flushing transactions for Durability

Database systems conventionally provide the ACID properties.
The ’D’ stands fordurability which means that when a transac-
tion is committed it is made durable as part of the call to commit
by synchronously flushing the transaction to disk.

FlushWhenClose can be called on an opened transaction to put
it into a mode where it will synchronously flush the transaction to
secondary storage when the transaction is closed. It must only be
called by the thread that originally opened the transaction. The
subsequentClose will only return after the transaction (and all
previous transactions) have been written to disk - at least accord-
ing to the Win32 calls. Note that the LSS file is opened with “no
write through cache” so in theory all flushed transactions will be
durable. Note well that this may not actually happen in practice
for hard-disks that have their local cache enabled.

Durability is particularly relevant to the management of data
that relate directly to real world processes such as airplane reser-
vation systems, or financial systems. It is also important for dis-
tributed transactions – typically involving a multi-phasecommit
protocol. In these cases, a transaction on a computer is associated
with the state of objects or events in the real world such as when
a client withdraws cash from an ATM. Clearly it is necessary for
the database to correctly record all such withdrawals. Thisleads
to the durability requirement. In practice this means that every
transaction must be flushed to disk as part of the commit.

Dedicated database servers may employ disk write caching
that promises to (eventually) write all data in the cache to disk.
This requires a battery backed up cache, and other facilities, such
as intercepting the RST signal to avoid clearing the cache, and
use of ECM (Error Correcting Memory). Unfortunately “nor-
mal” hard-disks provide a disk write cache that is unsuitable for
database servers, and this can’t merely be fixed by using a UPS.
Therefore it is necessary to disable the disk write cache. This
may require changing jumpers on the hard-disk, or running spe-
cial control software provided by the manufacturer.

Unfortunately, with no write cache, disk flush operations be-
come very expensive. With a stock hard-drive at 5400 to 7200
RPM, there can be at most 50 to 70 disk flushes (i.e. transac-
tions) per second. In many applications this is inadequate.

By making durability optional, the CEDA LSS is also appli-
cable to the management of data that doesn’t need to be syn-
chronised in real time with real world processes. Examples are
editing of text documents, spreadsheets, statistical analysis, web
browsing, GIS, multimedia databases, source code repositories
and CAD. In these cases the durability constraints can be relaxed
a little - such as by only flushing transactions to disk every few
seconds. Atomicity is still required to protect the integrity of
the data. However, a transaction only “commits” in the senseof
defining an atomic unit of work, rather than demanding it go to
non-volatile storage as part of the commit. This of course means
that a user may lose some edits on system failure, but losing at
most a few seconds of work may be acceptable in certain appli-
cations.

8.4 Deleting serial elements

An opened transaction can delete a serial element with a given
Seid with a call to

void DeleteSerialElement(Seid seid)

DeleteSerialElement must only be called by the same thread
that originally opened the transaction.

It is an error to delete a serial element that is currently opened
for reading or writing.

5



8.5 Deleting a Seid space

An opened transaction can delete the Seid space associated with
the givenSeidHigh with a call to

void DeleteSeidSpace(SeidHigh seidHigh)

The Seid space must be empty — i.e. by calling
DeleteSerialElement as required to delete all serial elements
in the Seid space.

DeleteSeidSpace must only be called by the same thread that
originally opened the transaction.

8.6 Writing serial elements

Each time a serial element is written to the LSS, it must be rewrit-
ten in its entirety - even if only a small part of its content changes.
It will in fact be written to a completely new location withinthe
store - i.e. at the “end of the log”.

If that seems particularly wasteful then the serial elements
should be smaller (i.e. finer grained). There is actually a trade
off here. Small serial elements reduce the number of bytes tobe
written to disk when changes are made. However larger serialel-
ements may improve read performance because related data tends
to remain clustered together on disk. Also larger serial elements
reduce the various overall space and time overheads that areas-
sociated with each serial element, such as the need to index its
physical location. Note finally that the product of transferrate
and seek time for a modern hard-disk is quite large - of the order
512k, so it is not efficient to write lots of small objects to disk if
they can become scattered over time.

To write a serial element with a given Seid, call the method
WriteSerialElement on aILssTransaction

ICloseableOutputStream* WriteSerialElement(Seid
seid);

This function is used to write new serial elements and also to
re-write existing serial elements. i.e. if the serial element already
exists then the previous rendition will be replaced by a new one.

The returnedICloseableOutputStream (which is neverNULL)
can be used to write the content as a byte stream. Note that
the entire serial element must always be written with calls to
WriteStream which has the following signature:

void WriteStream(const void* buffer, int
numBytes);

Note that if no data is written to the serial element then it is
still deemed to exist.

After writing the data, theICloseableOutputStream must be
closed with a call toClose. Furthermore, it must be closed before
the next call toWriteSerialElement, DeleteSerialElement,
DeleteSeidSpace or Close on the transaction.

It is an error to callWriteSerialElement for a serial ele-
ment that is currently opened for reading (perhaps by a different
thread).

WriteSerialElement must only be called by the same thread
that originally opened the transaction.

9 Boot strapping a store

It is common for a serial element to store (within its byte stream
content) the Seids of other serial elements. For example these
could represent the “children” in a whole-part hierarchy ofob-
jects.

Typically an application using the LSS will need to write some
sort of “root” registry or directory object to the store witha

known Seid. This is the starting point for accessing all other
objects in the store.ROOT_SEID is the Seid for this root serial
element.

Just after creating a new LSS, it is guaranteed that the first call
to CreateSeidSpace will return the high 32 bits ofROOT_SEID. It
is then guaranteed that the first call toAllocateSeid (passing in
the high 32 bits ofROOT_SEID) will return ROOT_SEID.

10 Clustering

A developer using the LSS needs to be concerned with cluster-
ing related data together, in order to maximise read performance.
This is achieved by writing related data close together in time
(so the related serial elements tend to be written to the sameseg-
ments). Note that rewriting individual serial elements over time
can have the effect of upsetting the clustering (because charges
to serial elements are never made in-place). Reclustering simply
involves rewriting a collection of related serial elementsto the
end of the log. The background cleaner thread will automatically
defragment the store.

The easiest way to achieve good read performance is to parti-
tion a very large database into mutually exclusive groups ofserial
elements, where each group is characterised as follows:

• The serial elements in a group are all closely related, mean-
ing that when one serial element is read from disk, it is likely
that other serial elements in the group will also be read in the
near future;

• There is a tendency for the serial elements in a group to be
written to the same segment. This is achieved by writing
batches of related serial elements to the LSS at a time. As
a corollary to this requirement, a group of related serial ele-
ments can’t be so large that it defeats the whole idea of them
being “clustered together”; and

• Every serial element in the group shares the same high 32
bits of the Seid. This allows the LSS to achieve clustering
in its internal hierarchical map used to track the physical
locations of serial elements.

Over time there is an “increasing entropy” effect where related
serial elements become spread around the disk. It can be very
beneficial to recluster serial elements, particularly serial elements
used to implement directory structures. This is achieved byoc-
casionally rewriting all the relevant serial elements to the LSS in
a single “batch”.

It is actually the excellent write performance of the LSS that
makes it economical to recluster related data together. Therefore
the LSS can provide very competitive read performance.

11 Supported Platforms

The CEDA LSS is currently supported on all flavors of 32 bit
Windows (i.e. Win95, Win98, WinXP etc) and will run as a 32
bit application under all x64 versions of Windows. The storeis
written to the hard-disk (which could be FAT32 or NTFS) as a
single file. This file grows as required to accommodate new data
written to the store. It can also be used with a raw partition.

12 MSSN

MSSN stands forMissing Shutdown Sequence Number. This is a
value stored in the root block of the LSS. It equals the numberof
times that the store has not been gracefully shutdown over its life.

6



This is zero if the store has always been properly closed (so that
the store is check pointed and flushed correctly). A large value
indicates that there have been many power failures or the client
software is not closing the LSS correctly.

The MSSN is useful for correctly mapping Seids to a larger
global address space that encompasses objects stored on many
computers. Single user applications of the LSS have no need for
the MSSN other than a simple diagnostic.

When the store is first created the MSSN is initialised to zero.
The value persists and is only incremented during recovery if it
is found that the store wasn’t previously shut down gracefully.

13 Throttle control

Consider a thread that quickly generates large amounts of data
that needs to be written to disk, and the thread writes these
changes using a large number of fine grained transactions. This
thread is considered to be a “producer” and the LSS is the “con-
sumer”.

Initially all 32 segments in the LSS segment cache will
be available to store the data written to the LSS. Therefore
calls to write data to theICloseableOutputStream (returned
by a call to WriteSerialElement) will simply store the data
in memory (in the segment cache) and return quickly. How-
ever, once the segment cache is full of “dirty” segments (ie seg-
ments that need to be written to disk), calls to write data to an
ICloseableOutputStream will block on disk I/O.

Consider further that in the layers above the LSS, there are mu-
texes (ie locks) used for concurrency control of higher level data
structures or objects. The thread that generates large amounts
of data may acquire these locks. The problem then is that these
locks could be held while the thread blocks on I/O. This could
make the system unresponsive, or reduce concurrency. It would
be better if the thread avoided tying up system resources while
blocking on I/O.

To solve this problem the LSS provides a facility for flow
control between “producer” and “consumer”. The thread
has the option of calling the following functions defined in
ILogStructuredStore:

// Blocks until it is appropriate for the
// producer to begin writing changes to
// the LSS again (because the LSS has
// written enough segments out to disk).
void BlockUntilLowWaterMark() const;

// Returns immediately, and indicates whether
// the producer has written enough changes
// to the LSS such that it should call
// BlockUntilLowWaterMark() in order to wait
// for the LSS lazy writer to "catch up"
bool ReachedHighWaterMark() const;

The “producer” thread should callBlockUntilLowWaterMark
before it acquires locks on valuable system resources. Thendur-
ing the period it is waiting for the LSS to catch up (by writing
dirty segments in the segment cache to disk), it avoids holding
locks.

14 Backup and hot standby for the LSS

The LSS optionally supports hot standby and incremental
backup.

Note however that at present, hot standby has fairly relaxed
assumptions about how up to date the standby store must be.

The backup / hot-standby system is compatible with 24x7 op-
eration of a store which continuously reads/writes large amounts

of data. The LSS properly supports applications that are write
bound for prolonged periods.

When the LSS is created or opened, a path to a directory for
the delta files can optionally be provided. LSS delta-files will au-
tomatically be written to this directory. These files are named
nnnnnn.lssdelta where nnnnnn is a sequence number, called a
Check Point Sequence Number(CPSN).

Note that the path to the main LSS file is independent of the
path to the directory of delta-files. They could easily be on dif-
ferent hard-disks.

To avoid limiting the write performance of the system, it is
recommended that a separate local hard-disk be used for storing
the deltas. This will allow the deltas and the LSS file to be writ-
ten concurrently. It also means either hard-disk can fail without
losing data.

Note that with virtual file systems it is easy to have delta files
written directly to a remote site. However that may expose the
LSS to network outages. A better strategy may be to write deltas
to a local hard-drive, and a separate process is responsiblefor
copying these files to a remote site. During network outages the
application is able to continue running.

A single delta-file is written for each check point on the LSS.
The LSS stores a CPSN in the main LSS file. This helps ensure
that deltas are applied in the right sequence. The CPSN directly
corresponds to the sequence number used for naming the delta
files.

With the default settings the LSS performs a check point af-
ter writing 128 segments (or 64 MB). A check point is also per-
formed whenever the store is closed.

Delta files respect check point boundaries. Note in turn that
check point boundaries respect both flush unit and transaction
boundaries.

15 Hot standby configuration

As long as the main application is not running, (and the main
LSS file is not opened) it can be copied using the file system.
This creates a “level 0 backup”. The copy will of course have
the same CPID and CPSN, recorded in the root block. However,
there are two significant problems with making a complete copy
of the store

• If the store is large then it can take a long time;

• The application that reads/writes the store can’t be running
while the copy is made.

Once a copy has been made the delta-files can be used to very
efficiently and safely bring the copy into sync with the main store.

Consider that we have previously created a “standby” store (by
making a file system copy). Let the 24x7 application be config-
ured to automatically create the delta-files in the normal way. Let
LssApplyDeltas.exe be run repeatedly so it applies deltas to the
“standby” as soon as they become available. At quiescence the
standby will match the main store.

Note that this process is compatible with 24x7 operation of the
main store (because it never needs to be shut down).

It is easy to create any number of “standby” stores in various
stages of how up to date they are, because deltas are not con-
sumed when they are applied to a store. Furthermore the standby
stores and the deltas can be backed up to tape etc. Therefore this
approach provides a great deal of flexibility.

7



Argument Description

level0path
The path to an existing LSS store,
called the “level 0”

deltasDirPath
the path to the directory containing
the delta-files

cpsn2

[Optional]
A “one past end” value of the cpsn,
to specify what delta files should be
applied to the level 0.

Table 4: LssApplyDeltas command line args

16 Utility Console Applications

16.1 LssApplyDeltas.exe

A console application called LssApplyDeltas.exe is able toapply
deltas to an existing LSS store, called a “level 0”, to bring it more
up to date.

On the command line two or three arguments may be specified:

LssApplyDeltas level0path deltasDirPath [cpsn2]

The arguments are described in Table 4. The half open inter-
val [cpsn1, cpcn2) is applied. cpsn1 is determined automatically
from the level 0 file. Note that delta files are applied up but not
including cpsn2.

LssApplyDeltas can optionally be passed the cpsn2 parame-
ter to limit the number of deltas to be applied. Currently this is
only at the course granularity of check-point boundaries. [In the
future it is expected that it will also be possible to specifya date/-
time stamp for more precisely controlling what transactions are
applied]

If the delta files directory contains the delta files from 0 on-
wards, and there is no level 0 LSS file, then LssApplyDeltas.exe
will actually create a level 0 from the delta files

The LSS always uses the extension “partial” for the current
delta file being written. This is renamed with the extension “lss-
delta” after the delta file has been completed. It is assumed that
this approach is sufficient to ensure that LssApplyDeltas won’t
apply a partially written delta file.

LssApplyDeltas is idiot proof in that it will never apply an
inappropriate delta.

16.2 LssCompare.exe

This console application can be used to compare two LSS stores
to see if they are (logically) equivalent - i.e. they represent the
same SEM. This is useful for validating the backup system. On
the command line, path1 and path2 are paths to two different LSS
files to be compared:

LssCompare path1 path2

17 LSS implementation

A Log Structured Store([1] and [3]) stores all data in a single
ever-growing linear sequence of records (called thelog). Records
in the log are never overwritten, making it straightforwardto
support transaction atomicity by simply writing special snapshot
marker records to the log. Since data items are never modifiedin-
place, the system must maintain an index structure that records
the current physical location of a given data item. A LSS records

the index structure itself in the log; typically this is written dur-
ing regular check points. In [3] the index forms the majorityof
what is referred to as meta-data, and it is pointed out that a LSS
is very space efficient in the sense that the amount of meta-data
written to disk can be comparatively small compared to otherap-
proaches. Recovery to a valid snapshot position simply requires
a forward scan through the log from the last valid check pointup
to the last snapshot record to bring the index up to date.

Most DB systems employ data that is read or written in pages,
and atomicity of transactions is achieved by the technique of
Write Ahead Logging(WAL) of changes to the data pages to a
separate log file, which can be scanned during recovery as re-
quired to undo/redo partially completed transactions.

The LSS achieves excellent write performance by treating the
log itself as the data! Therefore all writing occurs at the end of the
log, allowing for continuous writing with minimal movements of
the disk head.

The log is divided up into relatively large 512k pieces (called
segments). Reading and writing at this coarse granularity min-
imises disk head seeking overheads.

There are four background threads that take on responsibility
for writing segments, flushing the log, check pointing the store
(setting the point from which a recovery scan is required) and
cleaning partially fill segments to avoid fragmentation.

17.1 Recoverable Packet Map

The Recoverable Packet Map(RPM) is an 8 level hierarchical
map keyed by 64 bit Seid used to record the locations of serialel-
ements in the store. TheSegment Utilisation Table(SUT) records
the utilisation of every segment in the LSS. Both of these data
structures are only updated on disk during a check point. Check
points are normally performed after writing 64MB to the store.
This places an upper bound on the time required for a recovery
scan.

17.2 Assumptions on the hard-disk

Most databases providing ACID properties assume that the hard-
disk promises atomicity at the granularity of disk sectors (which
are typically 512 bytes), and will always write disk sectorson the
platter in the same order they were written to the OS.

Unfortunately many hard-disks on the market fail to meet these
requirements.

The LSS goes to a lot of trouble to avoid data loss without mak-
ing such strong assumptions on the hard-disk. It is permissible
for disk sectors to only be partially written, and also for writing
to the platter to be out of order. This is achievable because the
LSS doesn’t use Write Ahead Logging (WAL), and it employs
128 bit check point identity testing as well as a 32 bit CRC check
on “flush units” that are read during the recovery scan.

The root block contains two independent copies of the root
block data, written in strict alternation, and CRC checked.

17.3 Comparison to conventional database sys-
tems

Most databases use the ARIES algorithm (or similar). This al-
lows for in-place changes to be made to binary objects on disk.
However it must useWrite Ahead Logging(WAL) to support
atomicity. This has a number of disadvantages:

• it is vital that changes be written (and flushed) to the log be-
fore the corresponding changes are made to the “real” data.
Unfortunately most off the shelf hard-disks need to have

8



their local cache disabled to ensure that data is not written
in an order that conflicts with the WAL assumption;

• the write performance is essentially halved because all
changes must be logged - i.e. written to disk twice;

• writing changes in-place means the disk head needs to seek
around a lot. Sophisticated techniques are required to reduce
these problems. For example dirty pages are typically or-
dered so they can be written to disk by a lazy writer thread to
minimise disk-head seek times (this is called elevator seek-
ing). In practice, the product of transfer rate and seek time
for a modern hard-disk is quite high - e.g. 512 kByte. There-
fore it is very inefficient for the disk head to seek around
only writing a small number of bytes at a time; and

• writing changes in-place usually means that objects can’t
vary in size over time. Therefore objects that contain strings
and other variable sized data either need to reserve a fixed
size buffer, and impose a limit on the size, or else store the
string separately. Storing the string separately hurts cluster-
ing.

A log structured store eliminates these problems. Write per-
formance is typically limited only by the maximum transfer rate
of the hard-disk.

17.4 Check pointing

The LSS internally uses a hierarchical map to track the physical
locations of all serial elements in the store. It also maintains
information about the current utilisation of all the segments.

All this information is itself written to the root block or the log,
but only during a “check point”. The root block is updated using
Challis’ algorithm ([2]).

A check point is performed at the following times:

• after the store is opened and a recovery scan is required;

• after writing 128 segments (i.e. 64MB) of data to the end of
the log; and

• when the store is closed;

A recovery scan is performed when the store is opened and it
was found that it had not previously been closed gracefully.In
that case it has to scan all segments in the end of the log sincethe
last check point. This allows it to recover all committed transac-
tions and roll back any uncommitted transactions.

The maximum time for the recovery scan is bounded by the
time taken to read the segments at the end of the log since the
last check point. The time to read 128 segments only takes a few
seconds on a modern hard-disk.

17.4.1 Check point identifiers

The LSS generates a 128 bit GUID called a Check Point Identifier
(CPID) for each check point. The current CPID is stored in the
root block of the LSS. Each delta-file stores an input CPID and
output CPID. A delta file may only be applied if its input CPID
matches the current CPID of the store. The store’s CPID is then
set to the output CPID defined by the delta-file.

Both the CPID and CPSN are used to validate a delta-file (i.e.
to see whether it is allowed to be applied to the store). Note that
two stores can share a common ancestry, then diverge. The use
of CPIDs ensures that delta-files are never applied incorrectly.

Note that the first CPSN to be applied isn’t specified on the
command line to LssApplyDeltas.exe. Instead the LSS can work

this out itself (because it stores the current CPSN in its root
block). This, together with the CPID validation makes LssAp-
plyDeltas.exe “idiot proof”.

17.5 Lazy Writer

The LSS uses a background thread called the “Lazy writer” to
write dirty segments in the segment cache to disk. Thereforethe
thread that opens a transaction and writes some serial elements
will typically only write the byte stream to a buffer in mem-
ory, allowing it to complete the transaction very quickly without
blocking on I/O.

It is important to understand that ending a transaction implic-
itly commits it, but only in the sense of defining an atomic unit
of work. The actual data is written to disk in the background.

When writing larges amounts of data, the segment cache can
become full of dirty segments, and in that case it is possiblefor
the thread performing a transaction to block on I/O.

17.6 Cleaning

When the LSS is opened, a background thread is automatically
started that cleans segments with a poor utilisation (i.e. below a
preset threshold). The data on a segment to be cleaned is written
to the end of the log, allowing the segment to be returned to an
internal free segment pool. Because of this, users of the LSS
never need to concern themselves with fragmentation of the store.

When the store is created or opened, the cleaner threshold can
be specified. This defaults to 85% meaning that all segments that
are less than 85% utilised will be cleaned.

The cleaner is provided an ordered list of segments to clean
after each check point.

References

[1] Mendel Rosenblum and John K. Ousterhout,The Design
and Implementation of a Log-Structured File System, ACM
Transactions on Computer Systems, 1992, Volume 10, pages
1–15.

[2] Challis, M. F., Database Consistency and Integrity in a
Multi-User Environment, Databases: Improving Usability
and Responsiveness, Academic Press, pages 245-270, 1978.

[3] David Hulse and Alan Dearle,A Log-Structured Persistent
Store, Proceedings of the 19th Australasian Computer Sci-
ence Conference, 1996, pages 563–572.

9


